Oracle9i: Program with PL/SQL

Student Guide » Volume 1

40054GC11
Production 1.1
October 2001
D34004

ORACLE"

Authors

Nagavalli Pataballa
Priya Nathan

Technical Contributors

and Reviewers

AnnaAtkinson
Bryan Roberts
Caroline Pereda
Cedjas Zarco
Coley William
Danid Gabel

Dr. Christoph Burandt
Hakan Lindfors
Helen Robertson
John Hoff
Lachlan Williams
Laszlo Czinkoczki
Laura Pezzini
Linda Boldt
Marco Verbeek
Natarajan Senthil
Priya Vennapusa
Roger Abuzal af
Ruediger Steffan
Sarah Jones
Stefan Lindblad
Susan Dee

Publisher
Sheryl Domingue

Copyright © Oracle Corporation, 1999, 2000, 2001. All rights reserved.

This documentation contains proprietary information of Oracle Corporation. It is
provided under a license agreement containing restrictions on use and disclosure
and is also protected by copyright law. Reverse engineering of the software is
prohibited. If this documentation is delivered to a U.S. Government Agency of the
Department of Defense, then it is delivered with Restricted Rights and the following
legend is applicable:

Restricted Rights Legend

Use, duplication or disclosure by the Government is subject to restrictions for
commercial computer software and shall be deemed to be Restricted Rights software
under Federal law, as set forth in subparagraph (c)(1)(ii) of DFARS 252.227-7013,
Rights in Technical Data and Computer Software (October 1988).

This material or any portion of it may not be copied in any form or by any means
without the express prior written permission of Oracle Corporation. Any other copying
is a violation of copyright law and may result in civil and/or criminal penalties.

If this documentation is delivered to a U.S. Government Agency not within the
Department of Defense, then it is delivered with “Restricted Rights,” as defined in
FAR 52.227-14, Rights in Data-General, including Alternate Il (June 1987).

The information in this document is subject to change without notice. If you find any
problems in the documentation, please report them in writing to Education Products,
Oracle Corporation, 500 Oracle Parkway, Box SB-6, Redwood Shores, CA 94065.
Oracle Corporation does not warrant that this document is error-free.

All references to Oracle and Oracle products are trademarks or registered
trademarks of Oracle Corporation.

All other products or company names are used for identification purposes only, and
may be trademarks of their respective owners.

Contents

Curriculum Map

Introduction

Course Objectives |-2

About PL/SQL 1-3

PL/SQL Environment |-4

Benefits of PL/SQL |-5

Benefits of Subprograms 1-10

Invoking Stored Procedures and Functions [-11
Summary [-12

Declaring Variables

Objectives 1-2

PL/SQL Block Structure 1-3

Executing Statements and PL/SQL Blocks 1-4
Block Types 1-5

Program Constructs 1-6

Use of Variables 1-7

Handling Variables in PL/SQL 1-8

Types of Variables 1-9

Using iSQL*Plus Variables Within PL/SQL Blocks
Types of Variables 1-11

Declaring PL/SQL Variables 1-12

Guidelines for Declaring PL/SQL Variables 1-13
Naming Rules 1-14

Variable Initialization and Keywords 1-15
Scalar Data Types 1-17

Base Scalar Data Types 1-18

Scalar Variable Declarations 1-22

The %TYPE Attribute 1-23

Declaring Variables with the % TYPE Attribute 1-24

Declaring Boolean Variables 1-25
Composite Data Types 1-26

LOB Data Type Variables 1-27

Bind Variables 1-28

Using Bind Variables 1-30

Referencing Non-PL/SQL Variables 1-31
DBMS_OUTPUT.PUT_LINE 1-32
Summary 1-33

Practice 1 Overview 1-35

1-10

2 Writing Executable Statements
Objectives 2-2
PL/SQL Block Syntax and Guidelines 2-3
Identifiers 2-5
PL/SQL Block Syntax and Guidelines 2-6
Commenting Code 2-7
SQL Functions in PL/SQL 2-8
SQL Functions in PL/SQL: Examples 2-9
Data Type Conversion 2-10
Nested Blocks and Variable Scope 2-13
Identifier Scope 2-15
Quialify an Identifier 2-16
Determining Variable Scope 2-17
Operators in PL/SQL 2-18
Programming Guidelines 2-20
Indenting Code 2-21
Summary 2-22
Practice 2 Overview 2-23

3 Interacting with the Oracle Server
Objectives 3-2
SQL Statements in PL/SQL 3-3
SELECT Statements in PL/SQL 3-4
Retrieving Data in PL/SQL 3-7
Naming Conventions 3-9
Manipulating Data Using PL/SQL 3-10
Inserting Data 3-11
Updating Data 3-12
Deleting Data 3-13
Merging Rows 3-14
Naming Conventions 3-16
SQL Cursor 3-18
SQL Cursor Attributes 3-19
Transaction Control Statements 3-21
Summary 3-22
Practice 3 Overview 3-24

4 Writing Control Structures
Objectives 4-2
Controlling PL/SQL Flow of Execution 4-3
IF Statements 4-4
Simple IF Statements 4-5
Compound IF Statements 4-6
IF-THEN-ELSE Statement Execution Flow 4-7
IF-THEN-ELSE Statements 4-8
IF-THEN-ELSIF Statement Execution Flow 4-9
IF-THEN-ELSIF Statements 4-11
CASE Expressions 4-12
CASE Expressions: Example 4-13
Handling Nulls 4-15
Logic Tables 4-16
Boolean Conditions 4-17
Iterative Control: LOOP Statements 4-18
Basic Loops 4-19
WHILE Loops 4-21
FOR Loops 4-23
Guidelines While Using Loops 4-26
Nested Loops and Labels 4-27
Summary 4-29
Practice 4 Overview 4-30

5 Working with Composite Data Types
Objectives 5-2
Composite Data Types 5-3
PL/SQL Records 5-4
Creating a PL/SQL Record 5-5
PL/SQL Record Structure 5-7
The %ROWTYPE Attribute 5-8
Advantages of Using %ROWTYPE 5-10
The %ROWTYPE Attribute 5-11
INDEX BY Tables 5-13
Creating an INDEX BY Table 5-14
INDEX BY Table Structure 5-15
Creating an INDEX BY Table 5-16
Using INDEX BY Table Methods 5-17
INDEX BY Table of Records 5-18
Example of INDEX BY Table of Records 5-19
Summary 5-20
Practice 5 Overview 5-21

6 Writing Explicit Cursors
Objectives 6-2
About Cursors 6-3
Explicit Cursor Functions 6-4
Controlling Explicit Cursors 6-5
Declaring the Cursor 6-9
Opening the Cursor 6-11
Fetching Data from the Cursor 6-12
Closing the Cursor 6-14
Explicit Cursor Attributes 6-15
The %ISOPEN Attribute 6-16
Controlling Multiple Fetches 6-17
The %NOTFOUND and %ROWCOUNT Attributes 6-18
Example 6-20
Cursors and Records 6-21
Cursor FOR Loops 6-22
Cursor FOR Loops Using Subqueries 6-24
Summary 6-26
Practice 6 Overview 6-27

7 Advanced Explicit Cursor Concepts
Objectives 7-2
Cursors with Parameters 7-3
The FOR UPDATE Clause 7-5
The WHERE CURRENT OF Clause 7-7
Cursors with Subqueries 7-9
Summary 7-10
Practice 7 Overview 7-11

8 Handling Exceptions
Objectives 8-2
Handling Exceptions with PL/SQL 8-3
Handling Exceptions 8-4
Exception Types 8-5
Trapping Exceptions 8-6
Trapping Exceptions Guidelines 8-7
Trapping Predefined Oracle Server Errors 8-8
Predefined Exceptions 8-11
Trapping Nonpredefined Oracle Server Errors 8-12
Nonpredefined Error 8-13
Functions for Trapping Exceptions 8-14
Trapping User-Defined Exceptions 8-16
User-Defined Exceptions 8-17

Vi

10

Calling Environments 8-18

Propagating Exceptions 8-19

The RAISE_APPLICATION_ERROR Procedure 8-20
RAISE_APPLICATION_ERROR 8-22

Summary 8-23

Practice 8 Overview 8-24

Creating Procedures

Objectives 9-2

PL/SQL Program Constructs 9-4

Overview of Subprograms 9-5

Block Structure for Anonymous PL/SQL Blocks 9-6
Block Structure for PL/SQL Subprograms 9-7
PL/SQL Subprograms 9-8

Benefits of Subprograms 9-9

Developing Subprograms by Using iSQL*Plus 9-10
Invoking Stored Procedures and Functions 9-11
What Is a Procedure? 9-12

Syntax for Creating Procedures 9-13

Developing Procedures 9-14

Formal Versus Actual Parameters 9-15

Procedural Parameter Modes 9-16

Creating Procedures with Parameters 9-17

IN Parameters: Example 9-18

OUT Parameters: Example 9-19

Viewing OUT Parameters 9-21

IN OUT Parameters 9-22

Viewing IN OUT Parameters 9-23

Methods for Passing Parameters 9-24

DEFAULT Option for Parameters 9-25

Examples of Passing Parameters 9-26

Declaring Subprograms 9-27

Invoking a Procedure from an Anonymous PL/SQL Block 9-28
Invoking a Procedure from Another Procedure 9-29
Handled Exceptions 9-30

Unhandled Exceptions 9-32

Removing Procedures 9-34

Summary 9-35

Practice 9 Overview 9-37

Creating Functions
Objectives 10-2
Overview of Stored Functions 10-3

vii

11

12

Syntax for Creating Functions 10-4

Creating a Function 10-5

Creating a Stored Function by Using iSQL*Plus 10-6

Creating a Stored Function by Using iSQL*Plus: Example 10-7
Executing Functions 10-8

Executing Functions: Example 10-9

Advantages of User-Defined Functions in SQL Expressions 10-10
Invoking Functions in SQL Expressions: Example 10-11
Locations to Call User-Defined Functions 10-12

Restrictions on Calling Functions from SQL Expressions 10-13
Restrictions on Calling from SQL 10-15

Removing Functions 10-16

Procedure or Function? 10-17

Comparing Procedures and Functions 10-18

Benefits of Stored Procedures and Functions 10-19

Summary 10-20

Practice 10 Overview 10-21

Managing Subprograms

Objectives 11-2

Required Privileges 11-3

Granting Access to Data 11-4

Using Invoker's-Rights 11-5

Managing Stored PL/SQL Objects 11-6
USER_OBJECTS 11-7

List All Procedures and Functions 11-8
USER_SOURCE Data Dictionary View 11-9

List the Code of Procedures and Functions 11-10
USER_ERRORS 11-11

Detecting Compilation Errors: Example 11-12

List Compilation Errors by Using USER_ERRORS 11-13
List Compilation Errors by Using SHOW ERRORS 11-14
ESCRIBE in iSQL*Plus 11-15

Debugging PL/SQL Program Units 11-16

Summary 11-17

Practice 11 Overview 11-19

Creating Packages

Objectives 12-2

Overview of Packages 12-3
Components of a Package 12-4
Referencing Package Objects 12-5
Developing a Package 12-6

viii

13

14

Creating the Package Specification 12-8
Declaring Public Constructs 12-9

Creating a Package Specification: Example 12-10
Creating the Package Body 12-11

Public and Private Constructs 12-12

Creating a Package Body: Example 12-13
Invoking Package Constructs 12-15

Declaring a Bodiless Package 12-17
Referencing a Public Variable from a Stand-Alone Procedure 12-18
Removing Packages 12-19

Guidelines for Developing Packages 12-20
Advantages of Packages 12-21

Summary 12-23

Practice 12 Overview 12-26

More Package Concepts

Objectives 13-2

Overloading 13-3

Overloading: Example 13-5

Using Forward Declarations 13-8

Creating a One-Time-Only Procedure 13-10

Restrictions on Package Functions Used in SQL 13-11
User Defined Package: taxes_pack 13-12

Invoking a User-Defined Package Function from a SQL Statement 13-13
Persistent State of Package Variables: Example 13-14
Persistent State of Package Variables 13-15

Controlling the Persistent State of a Package Cursor 13-18
Executing PACK_CUR 13-20

PL/SQL Tables and Records in Packages 13-21

Summary 13-22

Practice 13 Overview 13-23

Oracle Supplied Packages

Objectives 14-2

Using Supplied Packages 14-3

Using Native Dynamic SQL 14-4

Execution Flow 14-5

Using the DBMS_SQL Package 14-6

Using DBMS_SQL 14-8

Using the EXECUTE IMMEDIATE Statement 14-9
Dynamic SQL Using EXECUTE IMMEDIATE 14-11
Using the DBMS_DDL Package 14-12

Using DBMS_JOB for Scheduling 14-13

iX

15

DBMS_JOB Subprograms 14-14

Submitting Jobs 14-15

Changing Job Characteristics 14-17

Running, Removing, and Breaking Jobs 14-18
Viewing Information on Submitted Jobs 14-19

Using the DBMS_OUTPUT Package 14-20
Interacting with Operating System Files 14-21

What Is the UTL_FILE Package? 14-22

File Processing Using the UTL_FILE Package 14-23
UTL_FILE Procedures and Functions 14-24
Exceptions Specific to the UTL_FILE Package 14-25
The FOPEN and IS_OPEN Functions 14-26

Using UTL_FILE 14-27

The UTL_HTTP Package 14-29

Using the UTL_HTTP Package 14-30

Using the UTL_TCP Package 14-31
Oracle-Supplied Packages 14-32

Summary 14-37

Practice 14 Overview 14-38

Manipulating Large Objects

Objectives 15-2

What Is a LOB? 15-3

Contrasting LONG and LOB Data Types 15-4
Anatomy of a LOB 15-5

Internal LOBs 15-6

Managing Internal LOBs 15-7

What Are BFILEs? 15-8

Securing BFILEs 15-9

A New Database Object: DIRECTORY 15-10
Guidelines for Creating DIRECTORY Objects 15-11
Managing BFILEs 15-12

Preparing to Use BFILEs 15-13

The BFILENAME Function 15-14

Loading BFILEs 15-15

Migrating from LONG to LOB 15-17

The DBMS_LOB Package 15-19
DBMS_LOB.READ and DBMS_LOB.WRITE 15-22
Adding LOB Columns to a Table 15-23

Populating LOB Columns 15-24

Updating LOB by Using SQL 15-26

Updating LOB by Using DBMS_LOB in PL/SQL 15-27
Selecting CLOB Values by Using SQL 15-28

16

17

Selecting CLOB Values by Using DBMS LOB 15-29
Selecting CLOB Values in PL/SQL 15-30
Removing LOBs 15-31

Temporary LOBs 15-32

Creating a Temporary LOB 15-33
Summary 15-34

Practice 15 Overview 15-35

Creating Database Triggers

Objectives 16-2

Types of Triggers 16-3

Guidelines for Designing Triggers 16-4

Database Trigger: Example 16-5

Creating DML Triggers 16-6

DML Trigger Components 16-7

Firing Sequence 16-11

Syntax for Creating DML Statement Triggers 16-13

Creating DML Statement Triggers 16-14

Testing SECURE_EMP 16-15

Using Conditional Predicates 16-16

Creating a DML Row Trigger 16-17

Creating DML Row Triggers 16-18

Using OLD and NEW Qualifiers 16-19

Using OLD and NEW Qualifiers: Example Using Audit Emp_Table 16-20
Restricting a Row Trigger 16-21

INSTEAD OF Triggers 16-22

Creating an INSTEAD OF Trigger 16-23

Differentiating Between Database Triggers and Stored Procedures 16-28

Differentiating Between Database Triggers and Form Builder Triggers 16-29

Managing Triggers 16-30

DROP TRIGGER Syntax 16-31

Trigger Test Cases 16-32

Trigger Execution Model and Constraint Checking 16-33

Trigger Execution Model and Constraint Checking: Example 16-34

A Sample Demonstration for Triggers Using Package Constructs 16-35
After Row and After Statement Triggers 16-36

Demonstration: VAR_PACK Package Specification 16-37

Summary 16-40

Practice 16 Overview 16-41

More Trigger Concepts
Objectives 17-2
Creating Database Triggers 17-3

Xi

18

Creating Triggers on DDL Statements 17-4
Creating Triggers on System Events 17-5

LOGON and LOGOFF Trigger Example 17-6
CALL Statements 17-7

Reading Data from a Mutating Table 17-8
Mutating Table: Example 17-9

Implementing Triggers 17-11

Controlling Security Within the Server 17-12
Controlling Security with a Database Trigger 17-13
Using the Server Facility to Audit Data Operations 17-14
Auditing by Using a Trigger 17-15

Enforcing Data Integrity Within the Server 17-16
Protecting Data Integrity with a Trigger 17-17
Enforcing Referential Integrity Within the Server 17-18
Protecting Referential Integrity with a Trigger 17-19
Replicating a Table Within the Server 17-20
Replicating a Table with a Trigger 17-21
Computing Derived Data Within the Server 17-22
Computing Derived Values with a Trigger 17-23
Logging Events with a Trigger 17-24

Benefits of Database Triggers 17-26

Managing Triggers 17-27

Viewing Trigger Information 17-28

Using USER_TRIGGERS 17-29

Summary 17-31

Practice 17 Overview 17-32

Managing Dependencies

Objectives 18-2

Understanding Dependencies 18-3

Dependencies 18-4

Local Dependencies 18-5

A Scenario of Local Dependencies 18-7

Displaying Direct Dependencies by Using USER_DEPENDENCIES 18-8
Displaying Direct and Indirect Dependencies 18-9
Displaying Dependencies 18-10

Another Scenario of Local Dependencies 18-11

A Scenario of Local Naming Dependencies 18-12
Understanding Remote Dependencies 18-13
Concepts of Remote Dependencies 18-15
REMOTE_DEPENDENCIES_MODE Parameter 18-16
Remote Dependencies and Time Stamp Mode 18-17

Xii

0O w>

Remote Procedure B Compiles at 8:00 a.m. 18-19
Local Procedure A Compiles at 9:00 a.m. 18-20
Execute Procedure A 18-21

Remote Procedure B Recompiled at 11:00 a.m. 18-22
Signature Mode 18-24

Recompiling a PL/SQL Program Unit 18-25
Unsuccessful Recompilation 18-26

Successful Recompilation 18-27

Recompilation of Procedures 18-28

Packages and Dependencies 18-29

Summary 18-31

Practice 18 Overview 18-32

Practice Solutions

Table Descriptions and Data

Creating Program Units by Using Procedure Builder
REF Cursors

Index

Additional Practices

Additional Practice Solutions

Additional Practices: Table Descriptions and Data

Xiii

Xiv

Preface

Profile
Before You Begin ThisCourse

Before you begin this course, you should have thorough knowledge of SQL,
iSQL* Plus, and working experience developing applications. Required
prerequisites are Introduction to Oracle9i: SQL or Introduction to Oracle9i for
Experienced QL Users.

How This Course I's Organized

Oracle9i: Programwith PL/SQL is an instructor-led course featuring lectures and
hands-on exercises. Online demonstrations and practice sessions reinforce the
concepts and skills that are introduced.

Preface 3

Related Publications

Oracle Publications
Title Part Number
Oracle9i Application Developer’s Guide-Fundamentals A88876-02
Oracle9i Application Developer’s Guide-Large Objects A88879-01
Oracle9i Supplied PL/SQL Packages and Type Reference A89852-02
PL/SQL User’s Guide and Reference A89856-01

Additional Publications
» System release bulletins
* Ingtallation and user’ s guides
* read. ne files
e International Oracle User’s Group (I0UG) articles
* Oracle Magazine

Preface 4

Typographic Conventions
Following are two lists of typographical conventions that are used specifically within text or

within code.

Typographic Conventions Within Text

Convention

Uppercase

Lowercase,

Initial cap

[talic

Quotation marks

Object or Term

Commands,
functions,
column names,
table names,
PL/SQL objects,
schemas

Filenames,
syntax variables,
usernames,
passwords

Trigger and
button names

Books, names of
courses and
manuals, and
emphasized
wordsor phrases
Lesson module

titles referenced
within a course

Example

Use the SELECT command to view
information stored inthe LAST_NAME
column of the EMPLOY EES table.

where: role is the name of therole italic
to be created.

Assign a When-Validate-Item trigger to
the ORD block.

Choose Cancel.

For more information on the subject, see
Oracle9i Server QL Language Reference
Manual.

Do not save changes to the database.

This subject is covered in Lesson 3,
“Working with Objects.”

Preface 5

Typographic Conventions (continued)

Typographic Conventions Within Code

Convention

Uppercase

Lowercase,
italic
Initial cap

Lowercase

Bold

Object or Term

Commands,
functions

Syntax variables

Formstriggers

Column names,
table names,
filenames,

PL/SQL objects

Text that must
be entered by a
user

Example

SELECT userid
FROM enp;

CREATE RCLE rol e;

For m nodul e: ORD

Trigger level: S | TEM QUANTITY
item

Trigger name: Wien-Validate-Item

OG_ACTI VATE_LAYER
(OG_GET_LAYER

(' prod_pie_layer'))

SELECT | ast _nane
FROM enp;

DROP USER scott;

Preface 6

Curriculum
Map

Languages Curriculum for Oracle9i

Introduction to | . . Oracle9i: SQL for
Oracle9i: SQL or IntroductloPO:o Oracle9i End Users
Introduction || Oracle9i: Experienced SQL Users inClass
to Oracle9i: Advanced
SQL Basics SQL
- inClass
inClass

I_l_l

Oracle9i: Program with PL/SQL

Oracle9i: PL/SQL Oracle9i: Develop PL/SQL
Fundamentals Program Units

inClass

Oracle9i: Advanced PL/SQL
inClass

‘ Copyright © Oracle Corporation, 2001. All rights reserved.

Integrated Languages Curriculum

Introduction to Oracle9i: SQL consists of two modules, Introduction to Oracle9i: SQL Basics and
Oracle9i: Advanced SQL. Introduction to Oracle9i: SQL Basics covers creating database structures and
storing, retrieving, and manipulating datain arelational database. OracleQi: Advanced SQL covers
advanced SELECT statements, Oracle SQL and i SQL*Plus Reporting.

For people who have worked with other rdational databases and have knowledge of SQL, another course,
called Introduction to Oracle9i for Experienced SQL Usersis offered. This course covers the SQL
statements that are not part of ANSI SQL but are specific to Oracle.

Oracle9i: Programwith PL/SQL consists of two modules, Oracle9i: PL/SQL Fundamentals and
Oracle9i: Develop PL/SQL Program Units. Oracle9i: PL/SQL Fundamentals covers PL/SQL basics
including the PL/SQL language structure, flow of execution and interface with SQL. Oracle9i: Develop
PL/SQL Program Units covers creating stored procedures, functions, packages, and triggers as well as
maintaining and debugging PL/SQL program code.

Oracle9i: QL for End Usersis directed towards individuals with little programming background and

covers basic SQL statements. This courseis for end users who need to know some basic SQL
programming.

Oracle9i: Advanced PL/SQL is appropriate for individuals who have experiencein PL/SQL programming
and covers coding efficiency topics, object-oriented programming, working with external code, and the
advanced features of the Oracle supplied packages.

Oracle9i: Program with PL/SQL Curriculum Map - 3

Languages Curriculum for Oracle9i

Introduction to | . . Oracle9i: SQL for
Oracle9i: SQL or Introductlofr;:o Oracle9i End Users
Introduction || Oracle9i: Experienced SQL Users inClass
to Oracle9i: Advanced
SQL Basics SQL
- inClass
inClass

I_l_l

Oracle9i: Program with PL/SQL

Oracle9i: PL/SQL Oracle9i: Develop PL/SQL
Fundamentals Program Units

inClass

Oracle9i: Advanced PL/SQL
inClass

‘ Copyright © Oracle Corporation, 2001. All rights reserved.

Integrated Languages Curriculum

Thedlide lists various modules and courses that are available in the languages curriculum. The following
table lists the modules and courses with their equivalent TBTSs.

Course or Module Equivalent TBT
Introduction to Oracle9i: SQL Oracle SQL: Basic SELECT Satements
Basics Oracle SQL: Data Retrieval Techniques
Oracle SQL: DML and DDL
Oracledi: Advanced SQL Oracle SQL and SQL*Plus. Advanced SELECT Satements
Oracle SQL and SQL*Plus. SQL*Plus and Reporting
Introduction to Oracle9i for Oracle QL Specifics: Retrieving and Formatting Data
Experienced SQL Users Oracle QL Soecifics: Creating and Managing Database Objects
Oracle9i: PL/SQL Fundamentals | PL/SQL: Basics
Oracle9i: Develop PL/SQL PL/SQL: Procedures, Functions, and Packages
Program Units PL/SQL: Database Programming
Oraclefi: L for End Users QL for End Users; Part 1
QL for End Users. Part 2
Oracle9i: Advanced PL/SQL Advanced PL/SQL: Implementation and Advanced Features
Advanced PL/SQL: Design Considerations and Object Types

Oracle9i: Program with PL/SQL Curriculum Map - 4

Overview of PL/SQL

Copyright © Oracle Corporation, 2001. All rights reserved.

Course Objectives

After completing this course, you should be able to
do the following:

®* Describe the purpose of PL/SQL

®* Describe the use of PL/SQL for the developer as
well as the DBA

* Explain the benefits of PL/SQL

* Create, execute, and maintain procedures,
functions, packages, and database triggers

* Manage PL/SQL subprograms and triggers
* Describe Oracle supplied packages
* Manipulate large objects (LOBS)

I-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In this course, you areintroduced to the features and benefits of PL/SQL. You learn how to access the
database using PL/SQL.

Y ou can develop modularized applications with database procedures using database objects, such asthe
following:

* Procedures and functions

e Packages

e Databasetriggers
Modular applications improve:

* Functionality

e Security

e Overall performance

Oracle9i: Program with PL/SQL -2

About PL/SQL

® PL/SQL is the procedural extension to SQL with
design features of programming languages.

e Data manipulation and query statements of SQL
are included within procedural units of code.

I-3 Copyright © Oracle Corporation, 2001. All rights reserved.

About PL/SQL

Procedural Language/SQL (PL/SQL) is Oracle Corporation’s procedural language extension to SQL, the
standard data access language for relational databases. PL/SQL offers modern software engineering
features such as data encapsulation, exception handling, information hiding, object orientation, and
brings state-of-the-art programming to the Oracle Server and toolset.

PL/SQL incorporates many of the advanced features of programming languages that were designed
during the 1970s and 1980s. It allows the data manipulation and query statements of SQL to be included
in block-structured and procedural units of code, making PL/SQL a powerful transaction processing
language. With PL/SQL, you can use SQL statements to finesse Oracle data, and PL/SQL control
statements to process the data.

Oracle9i: Program with PL/SQL -3

PL/SQL Environment

Procedural
PL/SQL PL/SQL statement

block block executor

Y

SQL statement executor

Oracle server
\ J

I-4 Copyright © Oracle Corporation, 2001. All rights reserved.

PL/SQL Environment

PL/SQL isnot an Oracle product in its own right; it is a technology used by the Oracle server and by
certain Oracle tools. Blocks of PL/SQL are passed to and processed by a PL/SQL engine, which may
reside within thetool or within the Oracle server. The enginethat is used depends on where the PL/SQL
block is being invoked from.

When you submit PL/SQL blocks from a Oracle precompiler such as Pro*C or Pro*Cobol program, user-

exit, iSQL*Plus, or Server Manager, the PL/SQL engine in the Oracle Server processes them. It separates
the SQL statements and sends them individually to the SQL statements executor.

A singletransfer isrequired to send the block from the application to the Oracle Server, thus improving
performance, especially in a client-server network. PL/SQL code can also be stored in the Oracle Server as
subprograms that can be referenced by any number of applications connected to the database.

Oracle9i: Program with PL/SQL -4

Benefits of PL/SQL

= Wy Form.
i

Integration %% ‘ﬁ ‘%’X
[=
I

|

|

| I |
—

Application

A

c—uw

Shared Oracle server
library
I-5 Copyright © Oracle Corporation, 2001. All rights reserved.
Benefits of PL/SQL
Integration

PL/SQL plays a central role in both the Oracle server (through stored procedures, stored functions,
database triggers, and packages) and Oracle devel opment tools (through Oracle Deveoper component
triggers).

Oracle Forms Devel oper, Oracle Reports Deveoper, and Oracle Graphics Devel oper applications make
use of shared libraries that hold code (procedures and functions) and can be accessed locally or remotely.

SQL datatypes can also be used in PL/SQL. Combined with the direct access that SQL provides, these
shared data types integrate PL/SQL with the Oracle server data dictionary. PL/SQL bridges the gap
between convenient access to database technology and the need for procedural programming capabilities.

PL/SQL in Oracle Tools

Many Oracletools, including Oracle Developer, have their own PL/SQL engine, which is independent of
the engine present in the Oracle Server.

The enginefilters out SQL statements and sends them individually to the SQL statement executor in the
Oracle server. It processes the remaining procedural statements in the procedural statement executor,
whichisinthe PL/SQL engine.

The procedural statement executor processes data that is local to the application (that is, data already
inside the client environment, rather than in the database). This reduces the work that is sent to the Oracle
server and the number of memory cursors that are required.

Oracle9i: Program with PL/SQL I-5

Benefits of PL/SQL

Improved performance

—SQL > >(
“sQL——>
. SQL ~ >

. SQL >

1-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Benefits of PL/SQL (continued)
I mproved Performance

PL/SQL can improve the performance of an application. The benefits differ depending on the execution
environment.

» PL/SQL can be used to group SQL statements together within a single block and to send the
entire block to the server in asingle call, thereby reducing networking traffic. Without PL/SQL,
the SQL statements are sent to the Oracle server one at atime. Each SQL statement resultsin
another call to the Oracle server and higher performance overhead. In a networked environment,
the overhead can become significant. As the dlide illustrates, if the application is SQL intensive,
you can use PL/SQL blocks and subprograms to group SQL statements before sending them to the
Oracle server for execution.

e PL/SQL can also operate with Oracle Server application development tools such as Oracle Forms
and Oracle Reports. By adding procedural processing power to thesetools, PL/SQL enhances
performance.

Note: Procedures and functions that are declared as part of a Oracle Forms or Reports Developer
application are distinct from those stored in the database, although their general structureis the same.
Stored subprograms are database objects and are stored in the data dictionary. They can be accessed by
any number of applications, including Oracle Forms or Reports Devel oper applications.

Oracle9i: Program with PL/SQL -6

Benefits of PL/SQL

Modularize program development

CLARE

BEGIN

EXCEPTION

END;

I-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Benefits of PL/SQL (continued)
Y ou can take advantage of the procedural capabilities of PL/SQL, which are not availablein SQL.
PL/SQL Block Structure

Every unit of PL/SQL comprises one or more blocks. These blocks can be entirdly separate or nested one
within another. The basic units (procedures, functions, and anonymous blocks) that make up a PL/SQL
program are logical blocks, which can contain any number of nested subblocks. Therefore, one block can
represent asmall part of another block, which in turn can be part of the whole unit of code.

Modularized Program Development

* Group logically related statements within blocks.
* Nest subblocks inside larger blocks to build powerful programs.

» Break down a complex problem into a set of manageable, wdl-defined, logical modules and
implement the modules with blocks.

» Placereusable PL/SQL codein libraries to be shared between Oracle Forms and Oracle Reports
applications or goreit in an Oracle server to make it accessible to any application that can interact
with an Oracle database.

Oracle9i: Program with PL/SQL I-7

Benefits of PL/SQL

e PL/SQL is portable.
®* You can declare variables.

-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Benefits of PL/SQL (continued)
Portability

» Because PL/SQL isnativeto the Oracle server, you can move programs to any host environment
(operating system or platform) that supports the Oracle server and PL/SQL. In other words,
PL/SQL programs can run anywhere the Oracle server can run; you do not need to tailor them to
each new environment.

* You can also move code between the Oracle server and your application. Y ou can write portable
program packages and create libraries that can be reused in different environments.

I dentifiers:
In PL/SQL you can use identifiers to do the following:

» Declarevariables, cursors, constants, and exceptions and then use them in SQL and procedural
statements

» Declare variables belonging to scalar, reference, composite, and large object (LOB) data types
» Declare variables dynamically based on the data structure of tables and columns in the database

Oracle9i: Program with PL/SQL -8

Benefits of PL/SQL

®* You can program with procedural language
control structures.

e PL/SQL can handle errors.

1-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Benefits of PL/SQL (continued)
Procedural L anguage Control Structures:
Procedural Language Control Structures allow you to do the following:
» Execute a sequence of statements conditionally

» Execute a sequence of statements iteratively in aloop
» Processindividually the rows returned by a multiple-row query with an explicit cursor

Errors:
The Error handling functionality in PL/SQL allows you to do the following:
» Process Oracle server errors with exception-handling routines

» Declare user-defined error conditions and process them with exception-handling routines

Oracle9i: Program with PL/SQL I-9

Benefits of Subprograms

* Easy maintenance

* Improved data security and integrity
* Improved performance

* Improved code clarity

I-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Benefits of Subprograms

Stored procedures and functions have many benefits in addition to modularizing application
devel opment:

» Easy maintenance that enables you to modify:
— Routines online without interfering with other users
— Oneroutineto affect multiple applications
— Oneroutineto diminate duplicate testing

» Improved data security and integrity by doing the following:

— Control indirect access to database objects from nonprivileged users with security
privileges

— Ensurethat related actions are performed together, or not at all, by funneling activity for
related tables through a single path

* Improved performance that allows you to do the following:
— Avoid reparsing for multiple users by exploiting the shared SQL area
— Avoid PL/SQL parsing at run time by parsing at compile time

— Reduce the number of calls to the database and decrease network traffic by bundling
commands

» Improved code clarity: Using appropriate identifier names to describe the action of the routines
reduces the need for comments and enhances the clarity of the code.

Oracle9i: Program with PL/SQL I-10

Invoking Stored Procedures
and Functions

Scott LOG_EXECUTI ON

iy procedure
-
T
4 VVVVVVVVVVVVVV

: - —>
l! \ A/ \" ‘ XXXXXXXXXXXXXX
—

g /-‘_ - \/ VVVVVVVVVWVVWY
V4 S| XXXXXXXXXXXXXX
] vwvvwwvvwwvvvy
XXXXXXXXXXXXXX
| @ VVVVVVVVVWVVWY
XXXXXXXXXXXXXX XXXXXXXXXXXXXX

.

VVVVVVVVVVVVVV VVVVVWVVVWVVVY
>
Oracle Oracle Oracle T
- XXXXXXXXXXXXXX ‘\
Portal Discoverer Forms
XXXXXXXXXXXXXX
Developer 00X
VVVVVVVVVVVVVV @
Scott
I-11 Copyright © Oracle Corporation, 2001. All rights reserved.

How to Invoke Stored Procedur es and Functions

Y ou can invoke a previously created procedure or function from a variety of environments such as
iSQL*Plus, Oracle Forms Develaper, Oracle Discoverer, Oracle Portal, another stored procedure,
and many other Oracle tools and precompiler applications. The table below describes how you can
invoke a previously created procedure, | og_execut i on, from avariety of environments.

iSQL*Plus EXECUTE | og_executi on

Oracle development toolssuch | | og_executi on;
as Oracle Forms Developer

Another procedure CREATE OR REPLACE PRCCEDURE | eave_enp
(p_id I N enpl oyees. enpl oyee_i d%I'YPE)
IS
BEGA N

DELETE FROM enpl oyees
WHERE enpl oyee id = p_id;
| og_executi on;
END
| eave_enp;

Oracle9i: Program with PL/SQL I-11

Summary

e PL/SQL is an extension to SQL.

®* Blocks of PL/SQL code are passed to and
processed by a PL/SQL engine.

* Benefits of PL/SQL:
— Integration
— Improved performance
— Portability
— Modularity of program development

e Subprograms are named PL/SQL blocks, declared
as either procedures or functions.

®* You can invoke subprograms from different
environments.

I-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

PL/SQL isalanguage that has programming features that serve as an extension to SQL. It provides you
with the ability to control the flow of constructs, and declare and use variables. PL/SQL applications
can run on any platform or operating system on which Oracle runs.

Named PL/SQL blocks are also known as subprograms or program units. Procedures, functions,
packages, and triggers are different PL/SQL constructs. Y ou can invoke subprograms from different
environments.

Oracle9i: Program with PL/SQL [-12

Declaring Variables

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

®* Recognize the basic PL/SQL block and its sections
* Describe the significance of variables in PL/SQL

* Declare PL/SQL variables

* Execute a PL/SQL block

1-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

This lesson presents the basic rules and structure for writing and executing PL/SQL blocks of code. It
also shows you how to declare variables and assign data types to them.

Oracle9i: Program with PL/SQL 1-2

PL/SQL Block Structure

DECLARE (Optional)
Variables, cursors, user-defined exceptions
BEG N (Mandatory)
— SQL statements
— PL/SQL statements
EXCEPTI ON (Optional)
Actions to perform when errors occur
END; (Mandatory)

CLARE

BEG N
[oo:]
EXCEPTI ON

END,;

1-3 Copyright © Oracle Corporation, 2001. All rights reserved.

PL/SQL Block Structure

PL/SQL isablock-structured language, meaning that programs can be divided into logical blocks. A
PL/SQL block consists of up to three sections: declarative (optional), executable (required), and
exception handling (optional). The following table describes the three sections:

Section Description Inclusion

Declarative Contains al variables, constants, cursors, and Optiond
user-defined exceptions that are referenced in the
executable and declarative sections

Executable Contains SQL statements to manipulate datain Mandatory
the database and PL/SQL statements to
manipulate data in the block

Exception Specifies the actions to perform when errorsand | Optiond
handling abnormal conditions arise in the executable
section

Oracle9i: Program with PL/SQL 1-3

Executing Statements and PL/SQL Blocks

DECLARE

v_variable VARCHAR2(5);
BEG N

SELECT col utm_nane

| NTOv_vari abl e

FROMt abl e_nane;
EXCEPTI ON

WHEN excepti on_nane THEN

END,

CLARE

BEG N

[ee:]

EXCEPTI ON

END,

1-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Executing Statements and PL/SQL Blocks
» Placeasemicolon (;) at the end of a SQL statement or PL/SQL control statement.
» When the block is executed successfully, without unhandled errors or compile errors, the
message output should be as follows:

PLIZOQL procedure successfilly completed.

» Section keywords DECLARE, BEQ N, and EXCEPTI ON are not followed by semicolons.
» ENDand all other PL/SQL statements require a semicolon to terminate the statement.

* You can string statements together on the same line, but this method is not recommended for
clarity or editing.

Note: In PL/SQL, an error is called an exception.

With modularity you can break an application down into manageable, well-defined modules. Through
successive refinement, you can reduce a complex problemto a set of simple problems that have easy-
to-implement solutions. PL/SQL meets this need with program units, which include blocks,
subprograms, and packages.

Oracle9i: Program with PL/SQL 1-4

Block Types

Anonymous Procedure Function
[DECLARE] PROCEDURE nane FUNCTI ON nane
| S RETURN dat at ype
IS
BEG N BEG N BEG N
--statenents --statenents --statenents
RETURN val ue;
[EXCEPTI ON] [EXCEPTI ON] [EXCEPTI ON]
END; END; END;
1-5 Copyright © Oracle Corporation, 2001. All rights reserved.
Block Types

A PL/SQL program comprises one or more blocks. These blocks can be entirely separate or nested one
within another. The basic units (procedures and functions, also known as subprograms, and
anonymous blocks) that make up a PL/SQL program are logical blocks, which can contain any humber
of nested subblocks. Therefore, one block can represent a small part of another block, which in turn
can be part of the whole unit of code.

Anonymous Blocks

Anonymous blocks are unnamed blocks. They are declared at the point in an application where they
areto be executed and are passed to the PL/SQL engine for execution at run time. Y ou can embed an
anonymous block within a precompiler program and within iSQL*Plus or Server Manager. Triggersin
Oracle Developer components consist of such blocks.

Subprograms

Subprograms are named PL/SQL blocks that can accept parameters and can be invoked. Y ou can
declare them either as procedures or as functions. Generally use a procedure to perform an action and a
function to compute a value.

Y ou can store subprograms at the server or application level. Using Oracle Developer components
(Forms, Reports, and Graphics), you can declare procedures and functions as part of the application (a
form or report) and call them from other procedures, functions, and triggers (see next page) within the
same application whenever necessary.

Note: A function is similar to a procedure, except that a function must return a value.

Oracle9i: Program with PL/SQL 1-5

Program Constructs

CLARE
BEG N
[eee]
EXCEPTI ON
END,;
Tools Constructs Database Server
Anonymous blocks Constructs

Application procedures or
functions

Anonymous blocks

Application packages

Stored proceduresor

functions

Application triggers

Stored packages

Object types

Databasetriggers

1-6

Object types

Copyright © Oracle Corporation, 2001. All rights reserved.

Program Constructs

Thefollowing table outlines a variety of different PL/SQL program constructs that use the basic
PL/SQL block. The program constructs are available based on the environment in which they are

executed.
Program
Construct Description Availability
Anonymous Unnamed PL/SQL blocks that are embedded withinan | All PL/SQL environments
blocks application or are issued interactively
Application Named PL/SQL blocks stored in an Oracle Forms Oracle Developer tools components,
procedures or Developer application or shared library; can accept for example, Oracle Forms
functions parameters and can be invoked repeatedly by name Developer, Oracle Reports
Stored Named PL/SQL blocks stored in the Oracle server; can | Oracle server
procedures or accept parameters and can be invoked repeatedly by
functions name
Packages Named PL/SQL modules that group related Oracle server and Oracle Developer

(Application or
Stored)

procedures, functions, and identifiers

tools components, for example,
Oracle Forms Developer

Database triggers

PL/SQL blocks that are associated with a database
table and fired automatically when triggered by DML
statements

Oracle server

data structure along with the functions and procedures
needed to manipulate the data

Application PL/SQL blocks that are associated with an application | Oracle Developer tools components,
triggers event and fired automatically for example, Oracle Forms Developer
Object types User-defined composite data types that encapsul ate a Oracle server and Oracle Developer

tools

Oracle9i: Program with PL/SQL 1-6

Use of Variables

Variables can be used for:

* Temporary storage of data

* Manipulation of stored values
* Reusability

* Ease of maintenance

1-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Use of Variables

With PL/SQL you can declare variables and then use them in SQL and procedural statements
anywhere that an expression can be used. Variables can be used for the following:

» Temporary storage of data: Data can be temporarily stored in one or more variables for use
when validating datainput and for processing later in the data flow process.

e Manipulation of stored values: Variables can be used for calculations and other data
manipulations without accessing the database.

» Reusahility: After they are declared, variables can be used repeatedly in an application simply
by referencing them in other statements, including other declarative statements.

» Ease of maintenance: When using % YPE and 9RO YPE (more information on ¥ROM YPE is
covered in a subsequent lesson), you declare variables, basing the declarations on the definitions
of database columns. If an underlying definition changes, the variable declaration changes
accordingly at run time. This provides data independence, reduces maintenance costs, and
allows programs to adapt as the database changes to meet new business needs. More information
on %' YPE is covered later in this lesson.

Oracle9i: Program with PL/SQL 1-7

Handling Variables in PL/SQL

* Declare and initialize variables in the declaration

section.

* Assign new values to variables in the executable
section.

®* Pass values into PL/SQL blocks through
parameters.

* View results through output variables.

1-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Handling Variables in PL/SQL
Declare and I nitialize Variables in the Declar ation Section

Y ou can declare variables in the declarative part of any PL/SQL block, subprogram, or package.
Declarations allocate storage space for a value, specify its data type, and name the storage location so
that you can reference it. Declarations can also assign an initial value and impose the NOT NULL
constraint on the variable. Forward references are not allowed. Y ou must declare a variable before
referencing it in other statements, including other declarative statements.

Assign New Valuesto Variablesin the Executable Section

In the executable section, the existing value of the variableis replaced with the new value that is
assigned to the variable.

Pass Values Into PL/SQL Subprograms Through Parameters

There are three parameter modes, | N (the default), OUT, and | N OUT. Usethel N parameter to pass
values to the subprogram being called. Use the OUT parameter to return values to the caller of a
subprogram. And usethel N OUT parameter to passinitial values to the subprogram being called and
to return updated values to the caller. We pass values into anonymous block viaiSQL*PLUS
substitution variables.

Note: Viewing the results from a PL/SQL block through output variables is discussed later in the
lesson.

Oracle9i: Program with PL/SQL 1-8

Types of Variables

* PL/SQL variables:
— Scalar
— Composite
— Reference
— LOB (large objects)
* Non-PL/SQL variables: Bind and host variables

1-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Types of Variables

All PL/SQL variables have a data type, which specifies a storage format, constraints, and valid range
of values. PL/SQL supports four data type categories—scalar, composite, reference, and LOB (large
object)—that you can use for declaring variables, constants, and pointers.

» Scalar datatypes hold a single value. The main data types are those that correspond to column
types in Oracle server tables; PL/SQL also supports Boolean variables.

» Composite data types, such asrecords, allow groups of fields to be defined and manipulated in
PL/SQL blocks.

» Reference datatypes hold values, called pointers, that designate other program items. Reference
datatypes are not covered in this course.

» LOB datatypes hold values, called locators, that specify the location of large objects (such as

graphic images) that are stored out of line. LOB data types are discussed in detail later in this
course.

Non-PL/SQL variables include host language variables declared in precompiler programs, screen
fidds in Forms applications, and iSQL*Plus host variables.

For more information on LOBs, see PL/SQL User’s Guide and Reference, “ Fundamentals.”

Oracle9i: Program with PL/SQL 1-9

Using iISQL*Plus Variables Within PL/SQL
Blocks

* PL/SQL does not have input or output capability of
its own.

®* You can reference substitution variables within a
PL/SQL block with a preceding ampersand.

®* iSQL*Plus host (or “bind”) variables can be used

to pass run time values out of the PL/SQL block
back to the iISQL*Plus environment.

1-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Using iSQL*Plus Variables Within PL/SQL Blocks

PL/SQL does not have input or output capability of its own. You must rely on the environment in
which PL/SQL is executing to pass values into and out of a PL/SQL block.

In the iSQL*Plus environment, i SQL*Plus substitution variables can be used to pass run time values
into a PL/SQL block. Y ou can reference substitution variables within a PL/SQL block with a
preceding ampersand in the same manner as you reference i SQL *Plus substitution variables in a SQL
statement. The text values are substituted into the PL/SQL block beforethe PL/SQL block is executed.
Therefore you cannot substitute different values for the substitution variables by using aloop. Only
one value will replace the substitution variable.

iSQL*Plus host variables can be used to pass run-time values out of the PL/SQL block back to the
iSQL*Plus environment. Y ou can reference host variables in a PL/SQL block with a preceding colon.
Bind variables are discussed in further detail later in this lesson.

Oracle9i: Program with PL/SQL 1-10

Types of Variables

25-JAN-01

“Four score and seven years ago

our fathers brought forth upon

this continent, a new nation,
concei ved i n LIBERTY, and dedi cat ed
to the proposition that all men

are created equal.”

1-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Types of Variables
Thedlideillustrates the following variable data types:

* TRUE represents a Boolean value.
e 25-JAN-01 represents a DATE.
» The photograph represents a BLOB.
» Thetext of aspeech represents a LONG.
e 256120.08 represents a NUVBER data type with precision and scale.
e The movierepresents a BFI LE.
» Thecity name, Atlanta, represents a VARCHAR2.

Oracle9i: Program with PL/SQL 1-11

Declaring PL/SQL Variables

Syntax:
identifier [CONSTANT] datatype [NOT NULL]
[:= | DEFAULT expr];

Examples:

DECLARE
v_hi redate DATE;
v_dept no NUVBER(2) NOT NULL : = 10;
v_l ocation VARCHAR2(13) := 'Atlanta';
c_comm CONSTANT NUMBER : = 1400;

1-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Declaring PL/SQL Variables

You must declare all PL/SQL identifiers in the declaration section beforereferencing them in the
PL/SQL block. Y ou have the option to assign an initial valueto a variable. Y ou do not need to assign a
valueto avariablein order to declareit. If you refer to other variables in a declaration, you must be
sure to declare them separately in a previous statement.

In the syntax:
identifier
CONSTANT
data type

NOT NULL

expr

is the name of the variable.

constrains the variable so that its value cannot change; constants must
beinitialized.

is ascalar, composite, reference, or LOB datatype. (This course
covers only scalar, composite, and L OB data types.)

constrains the variable so that it must contain a value. (NOT NULL
variables must beinitialized.)

is any PL/SQL expression that can be a literal expression, another
variable, or an expression involving operators and functions.

Oracle9i: Program with PL/SQL 1-12

Guidelines for Declaring PL/SQL Variables

* Follow naming conventions.

* Initialize variables designated as NOT NULL and
CONSTANT.

* Declare one identifier per line.

* Initialize identifiers by using the assignment
operator (: =) or the DEFAULT reserved word.

identifier := expr;

1-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Guidelines for Declaring PL/SQL Variables

Here are some guidelines to follow while declaring PL/SQL variables:
* Nametheidentifier according to the samerules used for SQL objects.

» You can use naming conventions—for example, v_name to represent a variable and ¢_name to
represent a constant variable.

e If you usethe NOT NULL constraint, you must assign a value.
» Declaring only oneidentifier per line makes code easier to read and maintain.

 In constant declarations, the keyword CONSTANT must precede the type specifier. The
following declaration names a constant of NUMBER subtype REAL and assigns the value of
50000 to the constant. A constant must be initialized in its declaration; otherwise, you get a
compilation error when the declaration is elaborated (compiled).

v_sal CONSTANT REAL : = 50000. 00;

« Initialize the variable to an expression with the assignment operator (: =) or, equivalently, with
the DEFAULT reserved word. If you do not assign an initial value, the new variable contains
NULL by default until you assign avalue later. To assign or reassign a value to a variable, you
write a PL/SQL assignment statement. Y ou must explicitly name the variable to receive the new
valueto the left of the assignment operator (: =). It isgood programming practiceto initialize all
variables.

Oracle9i: Program with PL/SQL 1-13

Naming Rules

* Two variables can have the same name, provided they
are in different blocks.

* The variable name (identifier) should not be the same
as the name of table columns used in the block.

DECLARE
enpl oyee_id NUMBER(6); ;

BEG N Adoptar_Iamlng
SELECT [enployee id convention for
I NTO enpl oyee_i d PL/SQL identifiers:
FROM enpl oyees
WHERE | ast _nane = ' Kochhar'; for examplef

END; v_employee id

/

1-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Naming Rules

Two objects can have the same name, provided that they are defined in different blocks. Where they
coexist, only the object declared in the current block can be used.

Y ou should not choose the same name (identifier) for a variable as the name of table columns used in
the block. If PL/SQL variables occur in SQL statements and have the same name as a column, the
Oracle server assumes that it is the column that is being referenced. Although the example code in the
dlide works, code that is written using the same name for a database table and variable name is not
easy to read or maintain.

Consider adopting a naming convention for various objects that are declared in the DECLARE section
of the PL/SQL block. Usingv__ asaprefix representing variable avoids naming conflicts with
database objects.

DECLARE
v_hire_date date;
BEG N

Note: The names of the variables must not be longer than 30 characters. The first character must bea
letter; the remaining characters can be letters, numbers, or special symbols.

Oracle9i: Program with PL/SQL 1-14

Variable Initialization and Keywords

* Assignment operator (: =)
e DEFAULT keyword
* NOT NULL constraint

Syntax:
identifier := expr;
Examples:
v_hiredate := '01-JAN 2001';
v_enane := 'Mduro';
1-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Variable Initialization and Keywords

In the syntax:
identifier is the name of the scalar variable.
expr can be avariable, literal, or function call, but not a database column.

The variable value assignment examples are defined as follows:
» Set theidentifier V_HI REDATE to avalue of 01-JAN-2001.
e Storethe name“Maduro” inthe V_ENANME identifier.

Variables areinitialized every time a block or subprogram is entered. By default, variables are
initialized to NULL. Unless you explicitly initialize a variable, its value is undefined.

Use the assignment operator (:=) for variables that have no typical value.
v_hire date : = '15-SEP- 1999

Note: Thisfour-digit valuefor year, YYY'Y, assignment is possible only in Oracle8i and later.
Previous versions may require the use of the TO_DATE function.

DEFAULT: You can usethe DEFAULT keyword instead of the assignment operator to initialize
variables. Use DEFAULT for variables that have atypical value.

v_ngr NUMBER(6) DEFAULT 100;
NOT NULL: Imposethe NOT NULL constraint when the variable must contain a value.

Y ou cannot assign nulls to a variable defined as NOT NULL. The NOT NULL constraint must be
followed by aninitialization clause.

v_city VARCHAR2(30) NOT NULL := 'Oxford'

Oracle9i: Program with PL/SQL 1-15

Variable Initialization and Keywords (continued)

Note: String literals must be enclosed in single quotation marks. For example, ' Hel | o, wor |l d' . If
thereis a single quotation mark in the string, use a single quotation mark twice—for example, to insert
avalue FISHERMAN'S DRIVE, the string would be" FI SHERVAN ' S DRI VE' .

Another way to assign values to variables is to sdect or fetch database values into it. The following
example computes a 10% bonus for the employee with the EMPLOYEE | D 176 and assigns the
computed valueto thev__bonus variable. Thisis done using the | NTO clause.

DECLARE
v_bonus NUMBER(8, 2);

BEG N

SELECT salary * 0.10

| NTO v_bonus

FROM enpl oyees

WHERE enpl oyee id = 176;
END;
/

Then you can usethevariablev_bonus in another computation or insert its value into a database
table.

Note: To assigh avalue into a variable from the database, use a SELECT or FETCH statement. The
FETCH statement is covered later in this course.

Oracle9i: Program with PL/SQL 1-16

Scalar Data Types

* Hold a single value
®* Have no internal components

25-0OCT-9
“Four score and seve
ago our fathers bromﬁ

forth upon this continent, a

new nation, conceived in
256120.08 | LiBERTY, and dedicated to

the proposition that all

tlanta

are created

1-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Scalar Data Types

Every constant, variable, and parameter has a data type (or type), which specifies a storage format,
constraints, and valid range of values. PL/SQL provides a variety of predefined data types. For
instance, you can choose from integer, floating point, character, Boolean, date, collection, reference,
and LOB types. In addition, This chapter covers the basic types that are used frequently in PL/SQL
programs. Later chapters cover the more specialized types.

A scalar data type holds a single value and has no internal components. Scalar data types can be
classified into four categories: number, character, date, and Boolean. Character and number data types
have subtypes that associate a base type to a constraint. For example, | NTEGER and PCSI Tl VE are
subtypes of the NUMBER base type.

For more information and the complete list of scalar data types, refer to PL/SQL User’s Guide and
Reference, “ Fundamentals.”

Oracle9i: Program with PL/SQL 1-17

Base Scalar Data Types

* CHAR [(nmaximum.| ength)]

* VARCHARZ2 (maxi mum | engt h)

* LONG

* LONG RAW

* NUMBER [(precision, scale)]
* Bl NARY | NTEGER

* PLS | NTEGER

* BOOLEAN

1-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Base Scalar Data Types

Data Type Description

CHAR _ Base type for fixed-length character data up to 32,767 bytes. If you do
[(maxi mum_| engt h)] | not specify amaximum_length, the default length is set to 1.
VARCHAR2 Base type for variable-length character data up to 32,767 bytes. There
(maximum_length) is no default size for VARCHAR2 variables and constants.

LONG Base type for variable-length character data up to 32,760 bytes. Use

the LONG data type to store variable-length character strings. Y ou can
insert any LONG value into a L ONG database column because the
maximum width of a LONG column is 2** 31 bytes. However, you
cannot retrieve avalue

longer than 32760 bytes from a LONG column into a LONG variable.

LONG RAW Base type for binary data and byte strings up to 32,760 bytes. LONG
RAWCdata is not interpreted by PL/SQL.

NUMBER Number having precision p and scale s. The precision p can range

[(precision, scale)] from 1 to 38. The scale s can range from -84 to 127.

Oracle9i: Program with PL/SQL 1-18

Base Scalar Data types (continued)

Data Type Description

Bl NARY_I NTEGER | Base type for integers between -2,147,483,647 and 2,147,483,647.

PLS_I NTEGER Base type for signed integers between -2,147,483,647 and
2,147,483,647. PLS_| NTECER values require less storage and are
faster than NUMBER and Bl NARY_| NTEGER val ues.

BOOLEAN Base type that stores one of three possible val ues used for logical
calculations: TRUE, FALSE, or NULL.

Oracle9i: Program with PL/SQL 1-19

e DATE

Base Scalar Data Types

e TI MESTAWP
e TIMESTAVMP WTH TI ME ZONE
e TIMESTAMP WTH LOCAL TI ME ZONE

1-20

| NTERVAL YEAR TO MONTH
| NTERVAL DAY TO SECOND

Copyright © Oracle Corporation, 2001. All rights reserved.

Base Scalar Data Types (continued)

Data Type Description

DATE Base type for dates and times. DATE values include the time of day in seconds
since midnight. The range for dates is between 4712 B.C. and 9999 A .D.

TI MESTAMP The TI MESTAMP data type, which extends the DATE data type, stores the year,

month, day, hour, minute, and second. The syntax is:

TI MESTAMP[(precision)]

where the optional parameter precision specifies the number of digitsin the
fractional part of the seconds field. Y ou cannot use a symbolic constant or
variable to specify the precision; you must use an integer literal in the range
0..9. The default is 6.

TI MESTAMP W TH
TI ME ZONE

The TI MESTAMP W TH TI ME ZONE data type, which extends the

TI MESTAMP data type, includes a time-zone displacement. The time-zone
displacement is the difference (in hours and minutes) between local time and
Coordinated Universal Time (UTC), formerly known as Greenwich Mean Time.
The syntax is:

TI MESTAMP[(precision)] WTH TI ME ZONE

where the optional parameter precision specifies the number of digitsin the
fractional part of the seconds field. Y ou cannot use a symbolic constant or
variable to specify the precision; you must use an integer literal in the range O ..
9. The default is 6.

Oracle9i: Program with PL/SQL 1-20

Base Scalar Data Types (continued)

Data Type

Description

TI MESTAMP W TH
LOCAL TI ME ZONE

The Tl MESTAMP W TH LOCAL TI ME ZONE datatype, which extends
the TI MESTAMP data type, includes a time-zone displacement. The time-
zone displacement is the difference (in hours and minutes) between local
time and Coordinated Universal Time (UTC)—formerly Greenwich M ean
Time. The syntax is:

TI MESTAMP[(preci sion)] WTH LOCAL TI ME ZONE

where the optional parameter precision specifies the number of digitsin the
fractional part of the secondsfield. Y ou cannot use a symbolic constant or
variable to specify the precision; you must use an integer literal in the range O
.. 9. The default is 6.

This datatype differs from TI MESTAMP W TH TI ME ZONE in that when
you insert a value into a database column, the value is normalized to the
database time zone, and the time-zone displacement is not stored in the
column. When you retrieve the value, Oracle returns the value in your local
session time zone.

I NTERVAL YEAR
TO MONTH

You usethel NTERVAL YEAR TO MONTH data type to store and

manipulate intervals of years and months. The syntax is:
| NTERVAL YEAR[(precision)] TO MONTH

whereyear s_pr eci si on specifies the number of digitsin the yearsfield.
Y ou cannot use a symbolic constant or variable to specify the precision; you
must use an integer literal intherange O .. 4. The defaultis 2.

| NTERVAL DAY TO
SECOND

You usethel NTERVAL DAY TO SECOND datatype to store and
manipulate intervals of days, hours, minutes, and seconds. The syntax is:

| NTERVAL DAY[(precisionl)] TO SECOND[(precision2)]
where pr eci si onl and pr eci si on2 specify the number of digitsin the
days field and seconds field, respectively. In both cases, you cannot use a
symbolic constant or variable to specify the precision; you must use an
integer literal in the range 0 .. 9.The defaults are 2 and 6, respectively.

Oracle9i: Program with PL/SQL 1-21

1-22

Scalar Variable Declarations

Examples:
DECLARE
v_job VARCHAR2(9) ;
v_count Bl NARY | NTECGER : = O;
v_total sal NUMBER(9, 2) : = O;
v_orderdate DATE : = SYSDATE + 7;
c_tax rate CONSTANT NUMBER(3, 2) := 8. 25;
v_valid BOOLEAN NOT NULL : = TRUE;

Copyright © Oracle Corporation, 2001. All rights reserved.

Declari

ng Scalar Variables

The exampl es of variable declaration shown on the dide are defined as follows:

v_j ob: variableto store an employeejob title

v_count : variableto count theiterations of aloop and initialized to O

v_total sal: variableto accumulate thetotal salary for a department and initialized to O
v_or der dat e: variableto store the ship date of an order and initialize to one week from today

c_tax_rat e:aconstant variable for thetax rate, which never changes throughout the PL/SQL
block

v_val i d: flag to indicate whether a piece of dataisvalid or invalid and initialized to TRUE

Oracle9i: Program with PL/SQL 1-22

The %' YPE Attribute

* Declare avariable according to:

— A database column definition

— Another previously declared variable
* Prefix %' YPE with:

— The database table and column

— The previously declared variable name

1-23 Copyright © Oracle Corporation, 2001. All rights reserved.

The %' YPE Attribute

When you declare PL/SQL variables to hold column values, you must ensure that the variable is of the
correct datatype and precision. If it is not, a PL/SQL error will occur during execution.

Rather than hard coding the data type and precision of a variable, you can use the %I YPE attribute to
declare a variable according to another previously declared variable or database column. The %' YPE
attribute is most often used when the value stored in the variable will be derived from atablein the
database. To usethe attributein place of the data type that isrequired in the variable declaration,
prefix it with the database table and column name. If referring to a previously declared variable, prefix
the variable nameto the attribute.

PL/SQL determines the data type and size of the variable when the block is compiled so that such
variables are always compatible with the column that is used to populateit. Thisis a definite
advantage for writing and maintaining code, because there is no need to be concerned with column
data type changes made at the database level. Y ou can also declare a variable according to another
previously declared variable by prefixing the variable name to the attribute.

Oracle9i: Program with PL/SQL 1-23

Declaring Variables
with the %' YPE Attribute

Syntax:
identifier Tabl e. col um_nane%l YPE;
Examples:
V_hane enpl oyees. | ast _name% YPE;
v_bal ance NUMBER(7, 2) ;
v_m n_bal ance v_bal ance%YPE : = 10;
1-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Declaring Variables with the %' YPE Attribute

Declare variables to store the last name of an employee. Thevariablev__nane isdefined to be of the
same data type as the LAST_NAME column in the EMPLOYEES table. % YPE provides the data type
of a database column:

§/'_'narre enpl oyees. | ast _nane%l YPE;

Declare variables to store the balance of a bank account, as well as the minimum balance, which starts
out as 10. Thevariablev_m n_bal ance isdefined to be of the same data type as the variable
v_bal ance. %I'YPE provides the data type of avariable:

i/'_bal ance NUMBER(7, 2) ;
v_nmi n_bal ance v_bal ance% YPE : = 10;

A NOT NULL database column constraint does not apply to variables that are declared using %a YPE.
Therefore, if you declare a variable using the % YPE attribute that uses a database column defined as
NOT NULL, you can assign the NULL valueto the variable.

Oracle9i: Program with PL/SQL 1-24

Declaring Boolean Variables

®* Only the values TRUE, FALSE, and NULL can be
assigned to a Boolean variable.

* The variables are compared by the logical
operators AND, OR, and NOT.

* The variables always yield TRUE, FALSE, or NULL.

* Arithmetic, character, and date expressions can be
used to return a Boolean value.

1-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Declaring Boolean Variables

With PL/SQL you can compare variables in both SQL and procedural statements. These comparisons,
called Boolean expressions, consist of simple or complex expressions separated by relational
operators. In a SQL statement, you can use Boolean expressions to specify therows in atable that are
affected by the statement. In a procedural statement, Boolean expressions are the basis for conditional
control. NULL stands for a missing, inapplicable, or unknown value.

Examples
v_sal 1l := 50000;
v_sal 2 : = 60000;

Thefollowing expression yields TRUE:
v_sall <v_sal2

Declare and initialize a Boolean variable;

DECLARE

v_flag BOOLEAN : = FALSE;
BEG N

v_flag := TRUE;
END;

Oracle9i: Program with PL/SQL 1-25

Composite Data Types

TRUE

23- DEC- 98

PL/SQL table structure

PL/SQL table structure

1

2
3
4

SM TH
JONES
NANCY
TIM

5000
2345
12

3456

A WODN P

L

1-26

T— VARCHAR2

Bl NARY_| NTEGER

L T— NUMBER
Bl NARY_| NTEGER

Copyright © Oracle Corporation, 2001. All rights reserved.

Composite Data Types

A scalar type has no internal components. A compasite type has internal components that can be
manipulated individually. Composite data types (also known as collections) are of TABLE, RECORD,
NESTED TABLE, and VARRAY types. Use the RECORD data typeto treat related but dissimilar data
asalogical unit. Usethe TABLE data type to reference and manipulate collections of data asawhole
object. Both RECORD and TABLE data types are covered in detail in a subsequent lesson. NESTED
TABLE and VARRAY data types are covered in the Advanced PL/SQL course.

For more information, see PL/SQL User’s Guide and Reference, “ Collections and Records.”

Oracle9i: Program with PL/SQL 1-26

LOB Data Type Variables

Book
(CLOB)

AN
Ll

Photo
(BLOB)

Movie
(BFI LE)

> NCLOB

1-27 Copyright © Oracle Corporation, 2001. All rights reserved.

LOB Data Type Variables

With the LOB (large object) data types you can store blocks of unstructured data (such as text, graphic
images, video clips, and sound wave forms) up to 4 gigabytesin size. LOB data types allow efficient,
random, piecewise access to the data and can be attributes of an object type. LOBs also support
random access to data.

» The CLOB (character large object) datatypeis used to store large blocks of single-byte character
data in the database in line (inside the row) or out of line (outside the row).

» TheBLOB (binary large object) data type is used to store large binary objects in the database in
line (inside the row) or out of line (outside the row).

» TheBFI LE (binary file) datatypeis used to store large binary objects in operating system files
outside the database.

 The NCLOB (national language character large object) data typeis used to store large blocks of
single-byte or fixed-width multibyte NCHAR unicode datain the database, in line or out of line.

Oracle9i: Program with PL/SQL 1-27

Bind Variables

=i My Form 1=
e _Edn Lslp]
P Bea O
| I
[I

| |
O/S I

Bind variable

1-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Bind Variables

A bind variableis a variable that you declare in a host environment. Bind variables can be used to pass
run-time values, either number or character, into or out of one or more PL/SQL programs. The
PL/SQL programs use bind variables as they would use any other variable. Y ou can reference
variables declared in the host or calling environment in PL/SQL statements, unless the statement isin a
procedure, function, or package. This includes host language variables declared in precompiler
programs, screen fields in Oracle Developer Forms applications, and i SQL*Plus bind variables.

Creating Bind Variables

To declare abind variable in the i SQL*Plus environment, use the command VARI ABLE. For example,
you declare a variable of type NUMBER and VARCHAR2 as follows:

VARI ABLE return_code NUMBER
VARI ABLE return_nsg VARCHAR2(30)

Both SQL and i SQL*Plus can reference the bind variable, and iSQL*Plus can display its value
through the iSQL*Plus PRI NT command.

Oracle9i: Program with PL/SQL 1-28

Displaying Bind Variables

To display the current value of bind variables in the iSQL*Plus environment, use the PRI NT
command. However, PRI NT cannot be used inside a PL/SQL block becauseit is an iSQL*Plus
command. Thefollowing exampleillustrates a PRI NT command:

VARl ABLE g_n NUMBER
PRINT g n
Y ou can reference host variablesin PL/SQL programs. These variables should be preceded by a colon.
VARI ABLE RESULT NUMBER

An example of using a host variablein a PL/SQL block:

BEG N
SELECT (SALARY*12) + NVL(COWM SSI ON_PCT, 0) INTO : RESULT
FROM enpl oyees WHERE enpl oyee id = 144;

END,
/
PRI NT RESULT

Oracle9i: Program with PL/SQL 1-29

Using Bind Variables

To reference a bind variable in PL/SQL, you must
prefix its name with a colon (%).

Example:
VARI ABLE g_sal ary NUMBER
BEG N
SELECT sal ary
| NTO :g_salary
FROM enpl oyees
WHERE enpl oyee _id = 178;
END;
/
PRI NT g sal ary

1-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Printing Bind Variables
IniSQL*Plus you can display the value of the bind variable using the PRI NT command.

| G_SALARY
| 7000

Oracle9i: Program with PL/SQL 1-30

Referencing Non-PL/SQL Variables

Store the annual salary into a iISQL*Plus host
variable.

:g_rmonthly sal := v_sal / 12;

* Reference non-PL/SQL variables as host
variables.

* Prefix the references with a colon (%).

1-31 Copyright © Oracle Corporation, 2001. All rights reserved.

Referencing Non-PL/SQL Variables

To reference host variables, you must prefix the references with a colon (¢) to distinguish them from
declared PL/SQL variables.

Example

This example computes the monthly salary, based upon the annual salary supplied by the user. This
script contains both i SQL * Plus commands as well as acomplete PL/SQL block.

VARl ABLE g nonthly sal NUMBER
DEFI NE p_annual _sal = 50000

SET VERI FY OFF

DECLARE

v_sal NUMBER(9,2) := &p_annual sal;
BEG N

g_rmonthly sal := v_sal/12;
END;

/
PRINT g nonthly_ sal

The DEFI NE command specifies a user variable and assigns it a CHAR value. Even though you enter the
number 50000, iSQL*Plus assigns a CHAR valueto p_annual _sal consisting of the characters,
5,0,0,0 and 0.

Oracle9i: Program with PL/SQL 1-31

DBMVS_OUTPUT. PUT LI NE

®* An Oracle-supplied packaged procedure
* An alternative for displaying data from a PL/SQL block

* Must be enabled in iISQL*Plus with
SET SERVEROQUTPUT ON

SET SERVEROUTPUT ON
DEFI NE p_annual _sal = 60000

DECLARE

v_sal NUMBER(9, 2) := &p_annual _sal;
BEG N

v_sal := v_sal/12;

DBVS _QUTPUT. PUT_LINE (' The nonthly salary is ' ||
TO CHAR(v_sal));
END;
/

1-32 Copyright © Oracle Corporation, 2001. All rights reserved.

DBNMS_OUTPUT. PUT_LI NE

Y ou have seen that you can declare a host variable, referenceit in a PL/SQL block, and then display
its contents in i SQL*Plus using the PRI NT command. Another option for displaying information from
aPL/SQL block isDBMS_OUTPUT. PUT_LI NE. DBMS_QUTPUT is an Oracle-supplied package, and
PUT_LI NE isa procedure within that package.

Within a PL/SQL block, reference DBMS _OUTPUT. PUT_LI NE and, in parentheses, specify the
string that you want to print to the screen. The package must first be enabled in your iSQL*Plus
session. To do this, executetheiSQL*Plus SET SERVEROUTPUT ON command.

The exampl e on the slide computes the monthly salary and prints it to the screen, using
DBVS_OUTPUT. PUT_LI NE. The output is shown below:

The monthly salatry 13 5000
PLISQL procedure successfully completed.

Oracle9i: Program with PL/SQL 1-32

Summary

In this lesson you should have learned that:

®* PL/SQL blocks are composed of the following
sections:
— Declarative (optional)
— Executable (required)

— Exception handling (optional) CLARE
* A PL/SQL block can be an anonymous E

block, procedure, or function. BEG N
(oo]
EXCEPTI ON
END;
1-33 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

A PL/SQL block is a basic, unnamed unit of a PL/SQL program. It consists of a set of SQL or
PL/SQL statements and it performs a single logical function. The declarative part isthefirst part of a
PL/SQL block and is used for declaring objects such as variables, constants, cursors, and definitions of
error situations called exceptions. The executable part is the mandatory part of a PL/SQL block, and
contains SQL and PL/SQL statements for querying and manipulating data. The exception-handling
part is embedded inside the executable part of ablock and is placed at the end of the executable part.

An anonymous PL/SQL block is the basic, unnamed unit of a PL/SQL program. Procedures and
functions can be compiled separately and stored permanently in an Oracle database, ready to be

executed.

Oracle9i: Program with PL/SQL 1-33

Summary

In this lesson you should have learned that:

* PL/SQL identifiers:

— Are defined in the declarative section
— Can be of scalar, composite, reference, or LOB data
type

— Can be based on the structure of another variable
or database object

— Can be initialized

* Variables declared in an external environment
such as iISQL*Plus are called host variables.

e Use DBMS QUTPUT. PUT LI NEto display data from
a PL/SQL block.

1-34 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary (continued)

All PL/SQL data types are scalar, composite, reference, or LOB type. Scalar data types do not have
any components within them, whereas composite data types have other data types within them.
PL/SQL variables are declared and initialized in the declarative section.

When a PL/SQL program is written and executed using i SQL*Plus, iSQL * Plus becomes the host
environment for the PL/SQL program. The variables declared in iSQL*Plus are called host variables.
Then the PL/SQL program is written and executed using, for example, Oracle Forms. Forms becomes
a host environment, and variables declared in Oracle Forms are called host variables. Host variables
arealso called bind variables.

To display information from a PL/SQL block use DBV _COUTPUT. PUT_LI NE. DBMS_QUTPUT is
an Oracle-supplied package, and PUT _LI NE isa procedure within that package. Within a PL/SQL
block, reference DBMS_OUTPUT. PUT LI NE and, in parentheses, specify the string that you want to
print to the screen.

Oracle9i: Program with PL/SQL 1-34

Practice 1 Overview

This practice covers the following topics:
* Determining validity of declarations

* Declaring a simple PL/SQL block

* Executing a simple PL/SQL block

1-35 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 1 Overview

This practice reinforces the basics of PL/SQL covered in this lesson, including data types, definitions
of identifiers, and validation of expressions. Y ou put all these d ements together to create a simple
PL/SQL block.

Paper-Based Questions
Questions 1 and 2 are paper-based questions.

Oracle9i: Program with PL/SQL 1-35

Practice 1
1. Evaluate each of the following declarations. Determine which of them are not legal and explain

why.
a DECLARE

v id NUMBER(4) ;
b. DECLARE

V_X, V.Y, V_2Z VARCHAR2(10) ;
C. DECLARE

v_birthdate DATE NOT NULL;
d. DECLARE

v_in_stock BOOLEAN : = 1;

Oracle9i: Program with PL/SQL 1-36

Practice 1 (continued)

2. In each of the following assignments, indicate whether the statement is valid and what the valid
data type of the result will be.

a v_days to _go := v_due date - SYSDATE;

b. v_sender := USER || ': " || TO_CHAR(v_dept_no);

c. v_sum : = $100, 000 + $250, 000;

d v_flag : = TRUE

ev.nl:=v.n2>(2* v_n3),;

f. v_value := NULL;

3. Create an anonymous block to output the phrase “My PL/SQL Block Works’ to the screen.

| G_MESSAGE
My PL/SCL Block Works

Oracle9i: Program with PL/SQL 1-37

Practice 1 (continued)
If you have time, complete the following exercise:

4. Create ablock that declares two variables. Assign the value of these PL/SQL variablesto
iSQL*Plus host variables and print the results of the PL/SQL variables to the screen. Execute
your PL/SQL block. Save your PL/SQL block in afilenamed p1g4. sql , by clicking the
Save Scri pt button. Remember to savethe script witha. sql extension.

V_CHAR Character (variable |ength)
V_NUM Nunber

Assign values to these variables as follows:

Vari abl e Val ue

V. CHAR The literal '42 is the answer'
V_NUM The first two characters fromV_CHAR

| G_CHAR

|42 is the answer

| G_NUM

| 42

Oracle9i: Program with PL/SQL 1-38

Writing Executable Statements

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

* Describe the significance of the executable
section

* Use identifiers correctly

* Write statements in the executable section
* Describe the rules of nested blocks

* Execute and test a PL/SQL block

®* Use coding conventions

2-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In this lesson, you learn how to write executable code in the PL/SQL block. You also learn the rules
for nesting PL/SQL blocks of code, aswell as how to execute and test PL/SQL code.

Oracle9i: Program with PL/SQL 2-2

PL/SQL Block Syntax and Guidelines

* Statements can continue over several lines.
* Lexical units can be classified as:

— Delimiters

— Identifiers

— Literals

— Comments

2-3 Copyright © Oracle Corporation, 2001. All rights reserved.

PL/SQL Block Syntax and Guidelines

Because PL/SQL isan extension of SQL, the general syntax rules that apply to SQL also apply to the
PL/SQL language.

» Alineof PL/SQL text contains groups of characters known as lexical units, which can be
classified as follows:

- Ddimiters (simple and compound symbols)
- Identifiers, which include reserved words
- Literals

- Comments

» Toimprove readability, you can separate lexical units by spaces. In fact, you must separate
adjacent identifiers by a space or punctuation.

* You cannot embed spacesin lexical units except for string literals and comments.
» Statements can be split across lines, but keywords must not be split.

Oracle9i: Program with PL/SQL 2-3

PL/SQL Block Syntax and Guidelines (continued)
Delimiters
Ddimiters are simple or compound symbols that have special meaning to PL/SQL.
Simple Symbols

Symbol M eaning

+ Addition operator

- Subtraction/negation operator
Multiplication operator

/ Division operator
= Relational operator
@ Remote access indicator

; Statement terminator

Compound Symbols

Symbol M eaning
<> Relational operator

H= Relational operator

|l Concatenation operator

- - Single line comment indicator

I* Beginning comment delimiter

*1 Ending comment delimiter

P = Assignment operator

Note: Reserved words cannot be used as identifiers unless they are enclosed in double quotation marks
(for example, "SELECT").

Oracle9i: Program with PL/SQL 2-4

Identifiers

® (Can contain up to 30 characters
* Must begin with an alphabetic character

®* (Can contain numerals, dollar signs, underscores,
and number signs

®* Cannot contain characters such as hyphens,
slashes, and spaces

* Should not have the same name as a database
table column name

* Should not be reserved words

2-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Identifiers
Identifiers are used to name PL/SQL program items and units, which include constants, variables,
exceptions, cursors, cursor variables, subprograms, and packages.
 ldentifiers can contain up to 30 characters, but they must start with an alphabetic character.
» Do not choose the same name for the identifier as the name of columnsin atable used in the

block. If PL/SQL identifiers arein the same SQL statements and have the same name as a
column, then Oracle assumes that it is the column that is being referenced.

» Reserved words should be written in uppercase to promote readability.

» Anidentifier consists of a letter, optionally followed by more | etters, numerals, dollar signs,
underscores, and number signs. Other characters such as hyphens, slashes, and spaces areillegal,
as the following examples show:
dot s&dashes -- illegal anpersand

debi t-anmount -- illegal hyphen

on/ of f -- illegal slash

user id -- illegal space

noney$$$t r ee, SN##, t ry_agai n_ are examples that show that adjoining and trailing dollar
signs, underscores, and number signs are allowed.

Oracle9i: Program with PL/SQL 2-5

PL/SQL Block Syntax and Guidelines

* Literals

— Character and date literals must be enclosed in
single quotation marks.

|v_nane := 'Henderson'; |

— Numbers can be simple values or scientific
notation.

® Aslash (/)runs the PL/SQL block in a script file
or in some tools such as iISQL*PLUS.

2-6 Copyright © Oracle Corporation, 2001. All rights reserved.

PL/SQL Block Syntax and Guidelines
A literal isan explicit numeric, character, string, or Boolean value that is not represented by an identifier.

o Character literals include all the printable charactersin the PL/SQL character set: |etters,
numerals, spaces, and special symbols.

» Numeric literals can be represented either by a simple value (for example, —=32.5) or by a
scientific notation (for example, 2E5, meaning 2* (10 to the power of 5) =
200000).

A PL/SQL program is terminated and executed by a slash (/) on aline by itsdlf.

Oracle9i: Program with PL/SQL 2-6

Commenting Code

* Prefix single-line comments with two dashes (- -).

* Place multiple-line comments between the symbols
/* and */.

Example:

DECLARE

v_sal NUMBER (9, 2);
BEG N
/* Compute the annual sal ary based on the
nmonthly sal ary input fromthe user */

v_sal := :g_nonthly sal * 12;
END; -- This is the end of the bl ock
2-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Commenting Code

Comment code to document each phase and to assist debugging. Comment the PL/SQL code with two
dashes (- -) if the comment is on a single ling, or enclose the comment between the symbols/ * and

* [if the comment spans several lines. Comments are strictly informational and do not enforce any
conditions or behavior on behavioral logic or data. Wdl-placed comments are extremely valuable for
code readability and future code maintenance.

Example

In the example on the dide, the line enclosed within / * and */ isthe comment that explains the code
that followsiit.

Oracle9i: Program with PL/SQL 2-7

SQL Functions in PL/SQL

* Available in procedural statements:
— Single-row number
— Single-row character
— Datatype conversion
— Date
— Timestamp
— GREATEST and LEAST
— Miscellaneous functions

Same as in SQL

* Not available in procedural statements:
— DECCODE

— Group functions

2-8 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL Functions in PL/SQL

Most of the functions available in SQL are also valid in PL/SQL expressions:
» Single-row number functions
» Single-row character functions
» Datatype conversion functions
» Datefunctions
e Timestamp functions
* CGREATEST, LEAST
» Miscellaneous functions

Thefollowing functions are not availablein procedural statements:
» DECODE.

» Group functions: AVG, M N, MAX, COUNT, SUM STDDEV, and VARI ANCE. Group functions
apply to groups of rows in a table and therefore are available only in SQL statementsin a
PL/SQL block.

Oracle9i: Program with PL/SQL 2-8

SQL Functions in PL/SQL: Examples

® Build the mailing list for a company.

v_mailing _address := v_nane|| CHR(10) | |
v_address| | CHR(10)| | v_state]| |
CHR(10) | | v_zi p;

®* Convert the employee name to lowercase.

V_enane .= LONER(Vv_enane) ;

2-9 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL Functions in PL/SQL: Examples

Most of the SQL functions can be used in PL/SQL. These built-in functions help you to manipulate
data; they fall into the following categories:

* Number
» Character
» Conversion
* Date
» Miscellaneous
The function examples in the dlide are defined as follows:

» Build the mailing address for a company.
» Convert the nameto lowercase.

CHRisthe SQL function that converts an ASCII codeto its corresponding character; 10 isthe code for
alinefeed.

PL/SQL hasits own error handling functions which are:
+ SQLCCODE
* SQLERRM(These error handling functions are discussed later in this course)

Oracle9i: Program with PL/SQL 2-9

Data Type Conversion

e Convert datato comparable data types.

* Mixed data types can result in an error and affect
performance.

* Conversion functions:
— TO CHAR
— TO DATE
— TO NUMBER

DECLARE
v_date DATE : = TO DATE(' 12- JAN-2001', ' DD- MON- YYYY') ;
BEG N

2-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Data Type Conversion

PL/SQL attempts to convert data types dynamically if they are mixed in a satement. For example, if
you assign a NUMBER value to a CHAR variable, then PL/SQL dynamically trandates the number into
a character representation, so that it can be stored in the CHAR variable. Thereverse situation also
applies, provided that the character expression represents a numeric value.

If they are compatible, you can also assign characters to DATE variables and vice versa.

Within an expression, you should make sure that data types are the same. If mixed data types occur in
an expression, you should use the appropriate conversion function to convert the data.

Syntax
TO CHAR (val ue, fnt)

TO DATE (val ue, fnt)
TO NUMBER (val ue, fnt)
where value is acharacter gtring, number, or date.
fmt is the format model used to convert avalue.

Oracle9i: Program with PL/SQL 2-10

Data Type Conversion

This statement produces a compilation error if the
variable v_dat e is declared as a DATE data type.

v_date := 'January 13, 2001';

2-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Data Type Conversion (continued)
The conversion examplein the dideis defined as follows:

Store a character string representing a date in a variable that is declared as a DATE data type. This code
causes a syntax error.

Oracle9i: Program with PL/SQL 2-11

Data Type Conversion

To correct the error, use the TO _DATE conversion
function.

v_date := TO DATE (' January 13, 2001',
"Month DD, YYYY');

2-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Data Type Conversion (continued)
The conversion examplein the dideto correct error from the previous dide is defined as follows:

To correct the error in the previous dlide, convert the string to a date with the TO_DATE conversion
function.

PL/SQL attempts conversion if possible, but its success depends on the operations that are being
performed. It is good programming practice to explicitly perform data type conversions, because they
can favorably affect performance and remain valid even with a change in software versions.

Oracle9i: Program with PL/SQL 2-12

Nested Blocks
and Variable Scope

* PL/SQL blocks can be nested wherever an
executable statement is allowed.

* A nested block becomes a statement.
* An exception section can contain nested blocks.

* The scope of an identifier is that region of a
program unit (block, subprogram, or package)
from which you can reference the identifier.

2-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Nested Blocks

One of the advantages that PL/SQL has over SQL isthe ability to nest statements. Y ou can nest blocks
wherever an executable statement is allowed, thus making the nested block a statement. Therefore, you
can break down the executable part of ablock into smaller blocks. The exception section can also
contain nested blocks.

Variable Scope

References to an identifier are resolved according to its scope and visibility. The scope of an identifier
is that region of a program unit (block, subprogram, or package) from which you can reference the
identifier. Anidentifier is visible only in the regions from which you can reference the identifier using
an unqualified name. Identifiers declared in a PL/SQL block are considered local to that block and
global to al its subblocks. If a global identifier is redeclared in a subblock, both identifiersremain in
scope. Within the subblock, however, only the local identifier is visible because you must use a
qualified nameto reference the global identifier.

Although you cannot declare an identifier twicein the same block, you can declare the same identifier
in two different blocks. The two items represented by the identifier are distinct, and any change in one
does not affect the other. However, a block cannot reference identifiers declared in other blocks at the
same leve because those identifiers are neither local nor global to the block.

Oracle9i: Program with PL/SQL 2-13

Nested Blocks and Variable Scope

Example:

X Bl NARY_| NTEGER;
BEG N

o Scope of x
DECLARE

y NUMBER,
BEG N

y:= X;
END;

Scope of y

END,;

2-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Nested Blocks and Variable Scope

In the nested block shown on the dide, the variable named y can reference the variable named x.
Variable x, however, cannot reference variable y outside the scope of y. If variabley in the nested
block is given the same name as variable x in the outer block, its valueis valid only for the duration of
the nested block.

Scope

The scope of an identifier is that region of a program unit (block, subprogram, or package) from which
you can reference the identifier.

Visibility
Anidentifier isvisible only in the regions from which you can reference the identifier using an
unqualified name.

Oracle9i: Program with PL/SQL 2-14

Identifier Scope

An identifier is visible in the regions where you can
reference the identifier without having to qualify it:

* A block can look up to the enclosing block.
e A block cannot look down to enclosed blocks.

2-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Identifier Scope

Anidentifier isvisibleinthe block in which it is declared and in all nested subblocks, procedures, and
functions. If the block does not find the identifier declared locally, it looks up to the declarative section

of the enclosing (or parent) blocks. The block never looks down to enclosed (or child) blocks or
sideways to sibling blocks.

Scope applies to all declared objects, including variables, cursors, user-defined exceptions, and
constants.

Oracle9i: Program with PL/SQL 2-15

Qualify an Identifier

* The qualifier can be the label of an enclosing
block.

* Qualify an identifier by using the block label prefix.

<<out er >>
DECLARE
bi rt hdat e DATE;

BEG N

DECLARE
bi rt hdat e DATE;
BEG N
outer.birthdate : =
TO_DATE(' 03- AUG 1976',
' DD- MON- YYYY') ;

END;

END;

2-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Qualify an Identifier

Qualify anidentifier by using the block labd prefix. In the example on the dide, the outer block is
labeled out er . Intheinner block, a variable with the sasme name, bi r t hdat e, asthevariablein
the outer block is declared. To reference the variable, bi r t hdat e, from the outer block in theinner
block, prefix the variable by the block name, out er . bi rt hdat e.

For more information on block labels, see PL/SQL User’s Guide and Reference, “ Fundamentals.”

Oracle9i: Program with PL/SQL 2-16

Determining Variable Scope
Class Exercise

<<out er >>
DECLARE
v_sal NUMBER(7, 2) := 60000;
v_conm NUMBER(7,2) := v_sal * 0.20;
v_nessage VARCHAR2(255) :="' eligible for conm ssion';
BEG N
DECLARE
v_sal NUMBER(7, 2) := 50000;
v_conm NUMBER(7, 2) := O;
v_total _conp NUMBER(7,2) := v_sal + v_comm
BEG N
v_nessage := 'CLERK not' | |v_nessage;
outer.v_conm:= v_sal * 0.30;
@ >
END;
v_nessage : = 'SALESMAN || v_nessage;
END;
2-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Class Exercise
Evaluate the PL/SQL block on the dlide. Determine each of the following values according to the rules
of scoping:
1. Thevalueof V_MESSACE at position 1.
. Thevalueof V_TOTAL_CQWVP at position 2.
. Thevalue of V_COWIat position 1.
. Thevalueof out er .V_CQvMat position 1.
. Thevalue of V_COWIat position 2.
. Thevalue of V_MESSAGE at position 2.

o O~ WDN

Oracle9i: Program with PL/SQL 2-17

Operators in PL/SQL

* Logical
* Arithmetic
* Concatenation Same as in SQL

* Parentheses to control order
of operations

* Exponential operator (**)

2-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Order of Operations

The operations within an expression are performed in a particular order depending on their precedence
(priority). The following table shows the default order of operations from high priority to low priority:

Operator Operation

o Exponentiation

+, - Identity, negation

0 Multiplication, division

+ -,] Addition, subtraction, concatenation
= <, >, <= 0> <>, = ~= A=) | Comparison

I'S NULL, LIKE, BETWEEN, IN

NOT Logical negation

AND Conjunction

OR Inclusion

Note: It is hot necessary to use parentheses with Boolean expressions, but it does make the text easier
to read.

Oracle9i: Program with PL/SQL 2-18

Operators in PL/SQL

Examples:
®* Increment the counter for a loop.

v_count .= v_count + 1,

* Set the value of a Boolean flag.

v_equal = (v_nl = v_n2);

* Validate whether an employee number contains a
value.

v_valid = (v_enmpno IS NOT NULL);

2-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Operators in PL/SQL

When working with nulls, you can avoid some common mistakes by keeping in mind the following

rules:

Comparisons involving nulls always yield NULL.
Applying thelogical operator NOT to anull yields NULL.

In conditional control statements, if the condition yields NULL, its associated sequence
of statementsis not executed.

Oracle9i: Program with PL/SQL 2-19

Programming Guidelines

Make code maintenance easier by:
* Documenting code with comments
* Developing a case convention for the code

* Developing naming conventions for identifiers and
other objects

* Enhancing readability by indenting

2-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Programming Guidelines

Follow programming guidelines shown on the dide to produce clear code and reduce maintenance
when developing a PL/SQL block.

Code Conventions

Thefollowing table provides guidelines for writing code in uppercase or lowercase to help you
distinguish keywords from named objects.

Category Case Convention Examples

SQL statements Uppercase SELECT, | NSERI

PL/SQL keywords Uppercase DECLARE, BEG N, | F

Datatypes Uppercase VARCHARZ, BOOLEAN

Identifiers and parameters Lowercase v_sal ,enmp_cursor,g_sal,
p_enpno

Database tables and columns Lowercase enpl oyees, enpl oyee_i d,
departrent _id

Oracle9i: Program with PL/SQL 2-20

Indenting Code

For clarity, indent each level of code.

Example:
DECLARE
v_dept no NUVBER(4) ;
BEG N v_location_id NUVBER(4);
| F x=0 THEN BEG N
y: =1 SELECT department id,
END |'F; | ocation_id
END; | NTO v_dept no,
v_location_id
FROM department s
WHERE depart nent _nane
= 'Sal es';
END;
/
2-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Indenting Code

For clarity, and to enhance readability, indent each level of code. To show structure, you can divide
lines using carriage returns and indent lines using spaces or tabs. Compare the following | F
statements for readability:

I F x>y THEN v_nax: =x; ELSE v_max: =y; END | F;

IF x >y THEN

v_max ;= X;
ELSE

v_max :=y;
END | F;

Oracle9i: Program with PL/SQL 2-21

Summary

In this lesson you should have learned that:
* PL/SQL block syntax and guidelines
* How to use identifiers correctly

®* PL/SQL block structure: nesting blocks and
scoping rules

* PL/SQL programming: %CLARE
— Functions
. BEG N
— Datatype conversions [e:]
— Operators EXCEPTI ON
— Conventions and guidelines
END;

2-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

Because PL/SQL isan extension of SQL, the general syntax rules that apply to SQL also apply to the
PL/SQL language.

Identifiers are used to name PL/SQL program items and units, which include constants, variables,
exceptions, cursors, cursor variables, subprograms, and packages.

A block can have any number of nested blocks defined within its executable part. Blocks defined
within a block are called subblocks. You can nest blocks only in the executable part of ablock.

Most of the functions availablein SQL are also valid in PL/SQL expressions. Conversion functions
convert a value from one data type to another. Generally, the form of the function follows the data
type TOdata type convention. Thefirst datatypeis the input datatype. The second datatypeisthe

output datatype.

Comparison operators compare one expression to another. Theresult is always TRUE, FALSE, or
NULL. Typically, you use comparison operators in conditional control statements and in the WHERE
clause of SQL data manipulation statements. The relational operators allow you to compare arbitrarily
complex expressions.

Variables declared in iSQL *Plus are called bind variables. To reference these variablesin PL/SQL
programs, they should be preceded by a colon.

Oracle9i: Program with PL/SQL 2-22

Practice 2 Overview

This practice covers the following topics:
®* Reviewing scoping and nesting rules
* Developing and testing PL/SQL blocks

2-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 2 Overview

This practice reinforces the basics of PL/SQL that were presented in the lesson. The practices use
sample PL/SQL blocks and test the understanding of the rules of scoping. Students also write and test
PL/SQL blocks.

Paper-Based Questions
Questions 1 and 2 are paper-based questions.

Oracle9i: Program with PL/SQL 2-23

Practice 2

PL/SQL Block
DECLARE
v_wei ght NUVBER(3) : = 600;
V_nessage VARCHAR2(255) := 'Product 10012';
BEG N
DECLARE
v_wei ght NUMBER(3) := 1;
v_message VARCHAR2(255) := 'Product 11001';
v_new | och VARCHAR2(50) := 'Europe';
BEG N
v_weight := v _weight + 1;
v_new locn := "Wstern ' || v_new.| ocn;
@ END;
v_weight := v _weight + 1;
vV_nessage := v_nessage || ' is in stock';
v_new locn := "Western ' || v_new._|ocnh;
(2 >
END;
/

1. Evaluate the PL/SQL block above and determine the data type and value of each of the
following variables according to the rules of scoping.

a. Thevaueof V_WVEI GHT at position 1 is:
b. Thevalueof V_NEW LOCN at position 1 is:
c. Thevaueof V_VEI GHT at position 2 is:
d. Thevalueof V_MESSAGE at position 2is:

e. Thevalueof V_NEW LOCN at position 2 is:

Oracle9i: Program with PL/SQL 2-24

Practice 2 (continued)

Scope Example
DECLARE
V_cust oner VARCHAR2(50) := 'Wmansport'
v_credit _rating VARCHAR2(50) : = ' EXCELLENT';
BEG N
DECLARE
V_cust oner NUMBER(7) := 201;
V_name VARCHAR2(25) := 'Unisports';
BEGN ______
f:'—v_ cust omer > { v_nane) \’:—\; credit_rati r;:
END, TTTTTTT i [y
{ \'/—customz:E) < v nam;:) «._v_credit_rati ng:
en, T TS Tt
/

2. Suppose you embed a subblock within a block, as shown above. Y ou declare two variables,
V_CUSTOVERand V_CREDI T_RATI NG, in the main block. Y ou also declare two variables,
V_CUSTOVER and V_NAME, in the subblock. Determine the values and data types for each of
the following cases.

a. Thevalueof V_CUSTOVERnthe subblock is:

b. Thevalueof V_NANME in the subblock is:

c. Thevalueof V_CREDI T_RATI NGin the subblock is:

d. Thevalueof V_CUSTOVER inthe main block is:

e. Thevalueof V_NAME inthe main block is:

f. Thevalueof V_CREDI T_RATI NGinthe main block is:

Oracle9i: Program with PL/SQL 2-25

Practice 2 (continued)

3. Create and execute a PL/SQL block that accepts two numbers through i SQL*Plus substitution
variables.

a. Use the DEFI NE command to provide the two values.
DEFINE p_numl = 2
DEFINE p_nun2 = 4

b. Pass the two values defined in step a above, to the PL/SQL block through iSQL*Plus
substitution variables. Thefirst number should be divided by the second number and have the

second number added to the result. The result should be stored in a PL/SQL variable and
printed on the screen.

Note: SET VERI FY OFF inthe PL/SQL block.

4.5
PLAZQL procedure successfilly completed.

4. Build aPL/SQL block that computes the total compensation for one year.

a. Theannual salary and the annual bonus percentage values are defined using the DEFI NE
command.

b. Pass the values defined in the above step to the PL/SQL block through i SQL*Plus substitution
variables. The bonus must be converted from a whole number to a decimal (for example, 15 to
.15). If thesalary isnul |, set it to zero before computing the total compensation. Execute the
PL/SQL block. Reminder: Usethe NVL function to handle nul | values.

Note: Total compensation is the sum of the annual salary and the annual bonus.
To test the NVL function, set the DEFI NE variable equal to NULL.
DEFI NE p_sal ary = 50000
DEFI NE p_bonus = 10

PLISQL procedure successfilly completed.

| G_TOTAL
| 55000

Oracle9i: Program with PL/SQL 2-26

Interacting with
the Oracle Server

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

* Write a successful SELECT statement in PL/SQL
* Write DML statements in PL/SQL
* Control transactions in PL/SQL

* Determine the outcome of SQL data manipulation
language (DML) statements

3-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In this lesson, you learn to embed standard SQL SELECT, | NSERT, UPDATE, and DELETE
statements in PL/SQL blocks. Y ou also learn to control transactions and determine the outcome of
SQL data manipulation language (DML) statementsin PL/SQL.

Oracle9i: Program with PL/SQL 3-2

SQL Statements in PL/SQL

* Extract arow of data from the database by using
the SELECT command.

* Make changes to rows in the database by using
DML commands.

* Control atransaction with the COVW T, ROLLBACK,
or SAVEPO NT command.

* Determine DML outcome with implicit cursor
attributes.

3-3 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL Statements in PL/SQL

When you extract information from or apply changes to the database, you must use SQL. PL/SQL
supports data manipulation language and transaction control commands of SQL. You can use SELECT
statements to populate variables with values queried from arow in atable. Y ou can use DML
commands to modify the data in a database table. However, remember the following points about
PL/SQL blocks while using DML statements and transaction control commands in PL/SQL blocks:

» The keyword END signals the end of a PL/SQL block, not the end of atransaction. Just asa
block can span multiple transactions, a transaction can span multiple blocks.

» PL/SQL does not directly support data definition language (DDL) statements, such as CREATE
TABLE, ALTER TABLE, or DROP TABLE.

» PL/SQL does not support data control language (DCL) statements, such as GRANT or REVCKE.

Oracle9i: Program with PL/SQL 3-3

SELECT Statements in PL/SQL

Retrieve data from the database with a SELECT
statement.

Syntax:

SELECT select |ist

| NTO {variabl e_nane[, variable _nane]...
| record_nane}

FROM tabl e

[WHERE condition];

3-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Retrieving Data Using PL/SQL
Use the SELECT statement to retrieve data from the database. In the syntax:

select_list isalist of at least one column and can include SQL expressions, row
functions, or group functions.

variable name isthe scalar variable that holds the retrieved value.
record name isthe PL/SQL RECORDthat holds theretrieved values.
table specifies the database table name.

condition is composed of column names, expressions, constants, and comparison operators,
including PL/SQL variables and constants.

Guidelines for Retrieving Data in PL/SQL
e Terminate each SQL statement with a semicolon (;).
» Thel NTOclauseis required for the SELECT statement when it is embedded in PL/SQL.

» The WHERE clause is optional and can be used to specify input variables, constants, literals, or
PL/SQL expressions.

Oracle9i: Program with PL/SQL 3-4

Retrieving Data Using PL/SQL (continued)

» Specify the same number of variablesin the | NTO clause as database columns in the SELECT
clause. Be sure that they correspond positionally and that their data types are compatible.

» Use group functions, such as SUM in a SQL statement, because group functions apply to groups
of rowsin atable.

Oracle9i: Program with PL/SQL 3-5

SELECT Statements in PL/SQL

* Thel NTOclause is required.
®* Queries must return one and only one row.

Example:
DECLARE
v_dept no NUVBER(4) ;
v_location_id NUVBER(4) ;
BEG N
SELECT department id, location_id
| NTO v_deptno, v_location_id
FROM department s
WHERE departnment _nane = ' Sal es';
END;
/
3-6 Copyright © Oracle Corporation, 2001. All rights reserved.

SELECT Statements in PL/SQL
| NTOClause

Thel NTOclause is mandatory and occurs between the SELECT and FROM clauses. It is used to
specify the names of variables that hold the values that SQL returns from the SELECT clause. You

must specify one variable for each item selected, and the order of the variables must correspond with
the items selected.

Usethe | NTOclauseto populate either PL/SQL variables or host variables.
Queries Must Return One and Only One Row

SELECT statements within a PL/SQL block fall into the ANSI classification of embedded SQL, for
which the following rule applies: queries must return one and only onerow. A query that returns more
than one row or no row generates an error.

PL/SQL manages these errors by raising standard exceptions, which you can trap in the exception
section of the block with the NO_DATA FOUND and TOO_MANY_ROWS exceptions (exception
handling is covered in a subsequent lesson). Code SELECT statements to return a single row.

Oracle9i: Program with PL/SQL 3-6

Retrieving Data in PL/SQL

Retrieve the hire date and the salary for the specified

employee.
Example:
DECLARE
v_hire_date enpl oyees. hi re_dat e%d YPE;
v_sal ary enpl oyees. sal ar y%d YPE;
BEG N
SELECT hire_date, salary
| NTO v_hire_date, v_salary

FROM enpl oyees

WHERE enpl oyee_id = 100;
END;
/

3-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Retrieving Data in PL/SQL
In the example onthe dide, thevariablesv_hi re_dat e andv_sal ary aredeclared in the
DECL ARE section of the PL/SQL block. In the executable section, the values of the columns
HI RE_DATE and SALARY for the employee with the EMPLOYEE | D 100 isretrieved from the
EMPLOYEES tableand storedinthev_hi re_date andv_sal ary variables, respectively.
Observe how the | NTO clause, along with the SELECT statement, retrieves the database column

values into the PL/SQL variables.

Oracle9i: Program with PL/SQL 3-7

Retrieving Data in PL/SQL

Return the sum of the salaries for all employees in
the specified department.

Example:

SET SERVERCUTPUT ON
DECLARE
v_sum sal NUVBER(10, 2) ;
v_dept no NUMBER NOT NULL : = 60;

BEG N
SELECT SUM sal ary) -- group function
[NTO
FROM enpl Oyees
WHERE department _id = v_deptno;

DBVS _QUTPUT. PUT_LINE (' The sumsalary is ' ||
TO CHAR(v_sum sal));
END;
/

3-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Retrieving Data in PL/SQL

Inthe example onthe dlide, thev_sum sal andv_dept no variables are declared in the DECLARE
section of the PL/SQL block. In the executable section, the total salary for the department with the
DEPARTMENT _| D60 is computed using the SQL aggregate function SUM and assigned to the
v_sum sal variable. Notethat group functions cannot be used in PL/SQL syntax. They are used in

SQL statements within a PL/SQL block.
The output of the PL/SQL block in the slide is shown bel ow:

The sum salaty 1s 28800
PLISQL procedure successfully completed.

Oracle9i: Program with PL/SQL 3-8

Naming Conventions

DECLARE
hire date enpl oyees. hi re_dat e%d YPE;
sysdat e hi re_dat e%d YPE;
enpl oyee_id enpl oyees. enpl oyee i dWYPE : = 176;
BEG N
SELECT hire _date, sysdate
| NTO hire _date, sysdate
FROM enpl oyees
WHERE enpl oyee_id = enpl oyee_i d;
END;
/
DECLARE
EEROER at line 1

CEA-01422: exact fetch returns more than requested number of rows
OFA-06512: at line &

3-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Naming Conventions

In potentially ambiguous SQL statements, the names of database columns take precedence over the
names of local variables. The example shown on the dlide is defined as follows: Retrieve the hire date
and today’ s date from the EMPL OYEES table for employee ID 176. This example raises an unhandled
run-time exception because in the WHERE clause, the PL/SQL variable hames are the same as that of
the database column names in the EMPLOYEES table.

Thefollowing DELETE statement removes all employees from the EMPLOYEES table where last
nameis not null, not just 'King', because the Oracle server assumes that both LAST _NAMES in the
WHERE clause refer to the database column:

DECLARE
| ast _nane VARCHAR2(25) := 'King';
BEG N
DELETE FROM enpl oyees WHERE | ast _nanme = | ast_nane;

Oracle9i: Program with PL/SQL 3-9

Manipulating Data Using PL/SQL

Make changes to database tables by using DML

commands:
* | NSERT
e UPDATE
INSERT
e DELETE
e MERGE
UPDATE
DELETE
3-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Manipulating Data Using PL/SQL

Y ou manipulate data in the database by using the DML commands. Y ou can issue the DML
commands | NSERT, UPDATE, DELETE and MERGE without restriction in PL/SQL. Row locks (and
table locks) arerdeased by including COVM T or ROLLBACK statements in the PL/SQL code.

* Thel NSERT statement adds new rows of data to the table.
» The UPDATE statement modifies existing rows in the table.
* TheDELETE statement removes unwanted rows from the table.

» The MERGE statement selects rows from one table to update or insert into another table. The
decision whether to update or insert into the target table is based on a condition in the ON clause.

Note: MERCGE is adeerministic statement. That is, you cannaot update the samerow of the target table
multiple times in the same MERCGE statement. Y ou must have | NSERT and UPDATE abject privileges
in the target table and the SELECT privilege on the source table.

Oracle9i: Program with PL/SQL 3-10

Inserting Data

Add new employee information to the EMPLOYEES
table.

Example:

BEG N
| NSERT | NTO enpl oyees
(empl oyee_id, first_nane, |ast_nane, email,
hire date, job_id, salary)
VALUES
(enpl oyees_seq. NEXTVAL, 'Ruth', 'Cores', 'RCORES,
sysdate, 'AD ASST', 4000);
END;
/

3-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Inserting Data

In the example on the dide, an | NSERT statement is used within a PL/SQL block to insert arecord
into the EMPLOYEES table. While using the | NSERT command in a PL/SQL block, you can:

» Use SQL functions, such as USER and SYSDATE

» Generate primary key values by using database sequences
» Deivevaluesinthe PL/SQL block

* Add column default values

Note: Thereisno possibility for ambiguity with identifiers and column names in the | NSERT
statement. Any identifier inthe | NSERT clause must be a database column name.

Oracle9i: Program with PL/SQL 3-11

Updating Data

Increase the salary of all employees who are stock

clerks.
Example:
DECLARE
v_sal _increase enpl oyees. sal ary%dYPE : = 800;
BEG N
UPDATE enpl oyees
SET salary = salary + v_sal _increase
WHERE job_id ="'ST _CLERK ;
END;
/
3-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Updating Data

There may be ambiguity inthe SET clause of the UPDATE statement because although the identifier
on the l&ft of the assignment operator is always a database column, the identifier on the right can be
either a database column or a PL/SQL variable.

Remember that the WHERE clause is used to determine which rows are affected. If no rows are
modified, no error occurs, unlike the SELECT statement in PL/SQL.

Note: PL/SQL variable assignments always use : =, and SQL column assignments always use =.

Recall that if column names and identifier names areidentical in the WHERE clause, the Oracle server
looks to the database first for the name.

Oracle9i: Program with PL/SQL 3-12

Deleting Data

Delete rows that belong to department 10 from the
EMPLOYEES table.

Example:
DECLARE
v_dept no enpl oyees. departnent _i dW'YPE : = 10;
BEG N
DELETE FROM enpl oyees
WHERE departnment _id = v_deptno;
END;
/
3-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Deleting Data

The DELETE statement removes unwanted rows from a table. Without the use of a WHERE clause, the
entire contents of atable can be removed, provided there are no integrity constraints.

Oracle9i: Program with PL/SQL 3-13

Merging Rows

Insert or update rows in the COPY_EMP table to match
the EMPLOYEES table.

DECLARE
v_enmpno enpl oyees. enpl oyee_i d%W'YPE : = 100;
BEG N
MERGE | NTO copy_enp c
USI NG enpl oyees e
ON (e.enployee_id = v_enpno)
WHEN MATCHED THEN
UPDATE SET
c.first _nane
c.l ast _nane
c.email

e.first_nane,
e. |l ast _nane,
e.emil,

WHEN NOT MATCHED THEN
| NSERT VALUES(e. enpl oyee_id, e.first_nane, e.last_nane,
., e.departnment __id);
END;

3-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Merging Rows

The MERGE statement inserts or updates rows in one table, using data from another table. Each row is
inserted or updated in the target table, depending upon an equijoin condition.

The exampl e shown matches the employee id in the COPY_EMP tableto theenpl oyee_i d inthe
EMPLOYEES table. If a match isfound, the row is updated to match the row in the EMPLOYEES
table. If therow is not found, it isinserted into the COPY_EMP table.

The complete example for using MERGE in a PL/SQL block is shown in the next page.

Oracle9i: Program with PL/SQL 3-14

Merging Data

DECLARE

v_enpno EMPLOYEES. EMPLOYEE_| DXIYPE : = 100;

BEG N

MERGE | NTO copy_enp ¢

us
N
VHEN

NG enpl oyees e

(e.empl oyee_id = v_enpno)

MATCHED THEN

UPDATE SET

Cc
Cc
Cc
Cc
Cc
Cc
Cc
Cc
Cc
Cc

VHEN

.first_nane
.last_nane
.email =
. phone_nunber
.hire _date

.job_id =
.salary =
. comm ssi on_pct
. manager _id =
.departnment _id =
NOT MATCHED THEN

® ® ®@ ® ® ® ® d® D D

.first_nane,

. last _nane,
.email,

. phone_nunber,

. hire_date,
.job_id,

.sal ary,
..comm ssi on_pct,
. manager _i d,
.departnent _id

| NSERT VALUES(e. enpl oyee id, e.first_name, e.last_nane,
e.emil, e.phone_nunber, e.hire_date, e.job_id,
e.sal ary, e.comm ssion_pct, e.nanager _id,

e. departnment _id);

Oracle9i:

Program with PL/SQL 3-15

Naming Conventions

* Use a naming convention to avoid ambiguity in the
WHERE clause.

e Database columns and identifiers should have
distinct names.

®* Syntax errors can arise because PL/SQL checks
the database first for a column in the table.

* The names of local variables and formal
parameters take precedence over the names of
database tables.

* The names of database table columns take
precedence over the names of local variables.

3-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Naming Conventions

Avoid ambiguity in the WHERE clause by adhering to a naming convention that distinguishes database
column names from PL/SQL variable names.

 Database columns and identifiers should have distinct names.
e Syntax errors can arise because PL/SQL checks the database first for a column in the table.

Oracle9i: Program with PL/SQL 3-16

Naming Conventions (continued)

Thefollowing table shows a set of prefixes and suffixes that distinguish identifiers from other
identifiers, database objects, and other named objects.

Identifier Naming Convention Example

Variable V_nane v_sal

Constant Cc_nane c_conpany_nane
Cursor name_cur sor enp_cur sor
Exception e_nanme e_too_nmany

Table type name_t abl e _type anount tabl e type
Table name_t abl e countries

Record type nane_record_type |enp_record_type
Record nane_r ecord cust oner _record
iSQL*Plus substitution variable | p_nane p_sal

(also referred to as substitution

parameter)

iSQL*Plus host or bind variable | g_nane g_year _sal

In such cases, to avoid ambiguity, prefix the names of local variables and formal parameters withv_,
asfollows:
DECLARE

v_|ast _name VARCHAR2(25);

Note: Thereisno possibility for ambiguity in the SELECT clause because any identifier in the
SELECT clause must be a database column name. Thereis no possibility for ambiguity inthel NTO
clause because identifiersin the | NTO clause must be PL/SQL variables. Thereis the possibility of
confusion only in the WHERE clause.

Oracle9i: Program with PL/SQL 3-17

SQL Cursor

® Acursoris aprivate SQL work area.

* There are two types of cursors:
— Implicit cursors
— Explicit cursors

* The Oracle server uses implicit cursors to parse
and execute your SQL statements.

* Explicit cursors are explicitly declared by the
programmer.

3-18 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL Cursor

Whenever you issue a SQL statement, the Oracle server opens an area of memory in which the
command is parsed and executed. This area is called a cursor.

When the executable part of ablock issues a SQL statement, PL/SQL creates an implicit cursor, which
PL/SQL manages automatically. The programmer explicitly declares and names an explicit cursor.
There are four attributes availablein PL/SQL that can be applied to cursors.

Note: Moreinformation about explicit cursorsis covered in a subsequent lesson.
For more information, refer to PL/SQL User’s Guide and Reference, “ Interaction with Oracle.”

Oracle9i: Program with PL/SQL 3-18

SQL Cursor Attributes

Using SQL cursor attributes, you can test the
outcome of your SQL statements.

SQLYROWCOUNT

Number of rows affected by the
most recent SQL statement (an
integer value)

SQLY%OUND

Boolean attribute that evaluates to
TRUE if the most recent SQL
statement affects one or more rows

SQLYANOTFOUND

Boolean attribute that evaluates to
TRUE if the most recent SQL
statement does not affect any rows

SQLY% SOPEN

Always evaluates to FALSE because
PL/SQL closes implicit cursors
immediately after they are executed

3-19 Copyright © Oracle Corporation, 2001. All rights reserved.

SQL Cursor Attributes

SQL cursor attributes allow you to evaluate what happened when an implicit cursor was last used. Use

these attributes in PL/SQL statements, but not in SQL statements.

Y ou can use the attributes SQLYROWCOUNT, SQL%-OUND, SQLYNOTFOUND, and SQL% SOPENIn
the exception section of a block to gather information about the execution of a DML statement.
PL/SQL does not return an error if a DML statement does not affect any rows in the underlying table.

However, if a SELECT statement does not retrieve any rows, PL/SQL returns an exception.

Oracle9i: Program with PL/SQL 3-19

SQL Cursor Attributes

Delete rows that have the specified employee ID from
the EMPLOYEES table. Print the number of rows

deleted.
Example:

VARI ABLE rows_del et ed VARCHAR2(30)
DECLARE

v_enpl oyee i d enpl oyees. enpl oyee_i dWYPE : = 176;
BEG N

DELETE FROM enpl oyees

WHERE enpl oyee_id = v_enpl oyee_i d;

crows_del eted : = (SQLYRRONCOUNT | |

" row deleted.");

END;
/
PRI NT rows_del et ed

Copyright © Oracle Corporation, 2001. All rights reserved.

SQL Cursor Attributes (continued)

The exampl e on the dlide del etes the rows from the EMPLOYEES table for EMPLOYEE | D 176. Using

the SQLYRONCOUNT attribute, you can print the number of rows deleted.

Oracle9i: Program with PL/SQL 3-20

Transaction Control Statements

* |nitiate a transaction with the first DML command
to follow a COVM T or ROLLBACK.

e Use COW T and ROLLBACK SQL statements to
terminate a transaction explicitly.

3-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Transaction Control Statements

Y ou control thelogic of transactions with COMM T and ROLLBACK SQL gtatements, rendering some
groups of database changes permanent while discarding others. As with Oracle server, DML
transactions start at the first command that follows a COVM T or ROLLBACK, and end on the next
successful COVMM T or ROLLBACK. These actions may occur within a PL/SQL block or as aresult of
events in the host environment (for example, in most cases, ending aiSQL*Plus session automatically
commits the pending transaction). To mark an intermediate point in the transaction processing, use
SAVEPQO NT.

COWM T [WORK] ;

SAVEPQ NT savepoi nt _narne;

ROLLBACK [WORK] ;

ROLLBACK [WORK] TO [SAVEPO NT] savepoi nt_nare;
where WORK is for compliance with ANSI standards.

Note: Thetransaction control commands are all valid within PL/SQL, although the host environment
may place somerestriction on their use.

Y ou can also include explicit locking commands (such asLOCK TABLEand SELECT ... FOR
UPDATE) in a block, which staysin effect until the end of the transaction (a subsequent lesson covers
moreinformation on the FOR UPDATE command). Also, one PL/SQL block does not necessarily
imply one transaction.

Oracle9i: Program with PL/SQL 3-21

Summary

In this lesson you should have learned how to:

e Embed SQL in the PL/SQL block using SELECT,
| NSERT, UPDATE, DELETE, and VERGE

* Embed transaction control statements in a PL/SQL
block COWM T, ROLLBACK, and SAVEPO NT

3-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

The DML commands | NSERT, UPDATE, DELETE, and MERGE can be used in PL/SQL programs
without any restriction. The COVM T statement ends the current transaction and makes permanent any
changes made during that transaction. The ROLLBACK statement ends the current transaction and
cancels any changes that were made during that transaction. SAVEPQOI NT names and marks the
current point in the processing of atransaction. With the ROLLBACK TOSAVEPQ NT statement, you
can undo parts of atransaction instead of the whol e transaction.

Oracle9i: Program with PL/SQL 3-22

Summary

In this lesson you should have learned that:
* There are two cursor types: implicit and explicit.

* Implicit cursor attributes are used to verify the
outcome of DML statements:

— SQLYROWCOUNT
— SQLY%OUND
— SQLYANOTFOUND
— SQL% SOPEN

* Explicit cursors are defined by the programmer.

3-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary (continued)

Animplicit cursor is declared by PL/SQL for each SQL data manipulation statement. Every implicit
cursor has four attributes: %-OUND, % SOPEN, %8NOTFOUND, and %6R0MCOUNT. When appended to
the cursor or cursor variable, these attributes return useful information about the execution of a DML
statement. Y ou can use cursor attributes in procedural statements but not in SQL statements. Explicit
cursors are defined by the programmer.

Oracle9i: Program with PL/SQL 3-23

Practice 3 Overview

This practice covers creating a PL/SQL block to:
* Select data from a table

* Insert datainto a table

* Update data in a table

* Delete arecord from atable

3-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 3 Overview

In this practice you write PL/SQL blocks to sdect, input, update, and delete information in a table,
using basic SQL query and DML statements within a PL/SQL block.

Oracle9i: Program with PL/SQL 3-24

Practice 3

1. Create a PL/SQL block that sdlects the maximum department number in the DEPARTVENTS
table and stores it in an iSQL*Plus variable. Print the results to the screen. Save your PL/SQL
block inafilenamed p3ql. sql . by clickingthe Save Scri pt button. Save the script with
a. sqgl extension.

| G_MAX _DEPTNO
| 270

2. Modify the PL/SQL block you created in exercise 1 to insert a new department into the
DEPARTMENTS table. Savethe PL/SQL block inafile named p3q2. sql by clicking the
Save Scri pt button. Savethe script witha. sql extension.

a. Usethe DEFI NE command to provide the department name. Name the new department
Educati on.

b. Passthe value defined for the department name to the PL/SQL block through a
i SQL*Plus substitution variable. Rather than printing the department number retrieved
from exercise 1, add 10 to it and use it as the department number for the new department.

c. Leavethelocation number as null for now.
d. Executethe PL/SQL block.
e. Display the new department that you created.

| DEPARTMENT ID | DEPARTMENT NAME | MANAGER ID | LOCATION ID
| 280 | Education | |

3. Create a PL/SQL block that updates the location ID for the new department that you added in
the previous practice. Save your PL/SQL block inafile named p3qg3. sql by clicking the
Save Scri pt button. Savethe script witha. sql extension.

a. UseaniSQL*Plus variable for the department ID number that you added in the previous
practice.

b. Usethe DEFI NE command to provide the location ID. Name the new location ID 1700.
DEFI NE p_deptno = 280
DEFINE p_loc = 1700

c. Passthe valueto the PL/SQL block through aiSQL*Plus substitution variable. Test the
PL/SQL block.

d. Display the department that you updated.

| DEPARTMENT ID | DEPARTMENT NAME | MANAGER ID | LOCATION ID
| 280 |Education | | 1700

Oracle9i: Program with PL/SQL 3-25

Practice 3 (continued)

4. CreateaPL/SQL block that del etes the department that you created in exercise 2. Save the
PL/SQL block inafilenamed p3g4. sql . by clickingtheSave Scri pt button. Savethe

script witha. sql extension.
a. Usethe DEFI NE command to provide the department ID.
DEFI NE p_dept no=280

b. Passthe valueto the PL/SQL block through aiSQL*Plus substitution variable. Print to
the screen the number of rows affected.

c. Test the PL/SQL block.

| G_RESULT

|1 rowis) deleted.

d. Confirmthat the department has been deleted.

no rows selected

Oracle9i: Program with PL/SQL 3-26

Writing Control Structures

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

* |dentify the uses and types of control structures

¢ Construct an | F statement

* Use CASE expressions

® Construct and identify different loop statements

* Use logic tables

® Control block flow using nested loops and labels

4-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In this lesson, you learn about conditional control within the PL/SQL block by using | F statements
and loops.

Oracle9i: Program with PL/SQL 4-2

Controlling PL/SQL Flow of Execution

®* You can change the logical execution of
statements using conditional | F statements and

loop control structures.

* Conditional | F statements:
— | F-THEN-END | F
— | F-THEN- ELSE-END | F
— |IF-THEN-ELSIF-END | F

4-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling PL/SQL Flow of Execution

Y ou can change the logical flow of statements within the PL/SQL block with a number of control
structures. This lesson addresses three types of PL/SQL control structures: conditional constructs with
the | F statement, CASE expressions, and LOOP control structures (covered later in this lesson).

There arethreeforms of | F statements:
e |F-THEN-END | F
e | F-THEN-ELSE-END | F
e |F-THEN-ELSIF-END | F

Oracle9i: Program with PL/SQL 4-3

| F Statements

Syntax:

| F condition THEN
st at ement s;

[ELSI F condition THEN
st at enents;]

[ELSE
st at enents;]
END | F;
If the employee name is Gietz, set the Manager ID to
102.
| F UPPER(v_l| ast _nane) = 'A ETZ' THEN
v_mgr = 102;
END | F;
4-4 Copyright © Oracle Corporation, 2001. All rights reserved.

| F Statements

The structure of the PL/SQL | F statement is similar to the structure of | F statementsin other
procedural languages. It allows PL/SQL to perform actions selectively based on conditions.

In the syntax:

condition is aBoolean variable or expression (TRUE, FALSE, or NULL). (It
is associated with a sequence of statements, which is executed only
if the expression yields TRUE.)

THEN is a clause that associates the Boolean expression that precedes it
with the sequence of statements that follows it.

statements can be one or more PL/SQL or SQL statements. (They may include

further | F statements containing several nested | F, ELSE, and ELSI F
statements.)

ELSI F is akeyword that introduces a Boolean expression. (If thefirst condition
yields FALSE or NULL thenthe ELSI F keyword introduces additional
conditions.)

ELSE is a keyword that executes the sequence of statements that follows
it if the control reaches it.

Oracle9i: Program with PL/SQL 4-4

Simple IF Statements

If the last name is Vargas:
* Setjob IDto SA_REP
®* Set department number to 80

| F v_enane = 'Vargas' THEN
v_job = 'SA REP ;
v_dept no = 80;
END | F;
4-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Simple | F Statements

In the example on the dlide, PL/SQL assigns values to the following variables, only if the condition is
TRUE:

v_jobandv_deptno

If the condition is FALSE or NULL, PL/SQL ignores the statementsin the | F block. In either case,
control resumes at the next statement in the program following the END | F.

Guidelines
* You can perform actions sdectively based on conditions that are being met.

» When writing code, remember the spelling of the keywords:
— ELSI Fisoneword.

— END | Fistwo words.

« If the controlling Boolean condition is TRUE, the associated sequence of statements is executed;
if the controlling Boolean condition is FALSE or NULL, the associated sequence of statementsis
passed over. Any number of ELSI F clauses are permitted.

 Indent the conditionally executed statements for clarity.

Oracle9i: Program with PL/SQL 4-5

Compound IF Statements

If the last name is Vargas and the salary is more than
6500:

Set department number to 60.

| F v_ename = 'Vargas' AND salary > 6500 THEN
v_deptno : = 60;
END | F,;
4-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Compound | F Statements

Compound | F statements use logical operators like AND and NOT. In the example on the dlide, the | F
statement has two conditions to evaluate:

» Last name should be Vargas

e Salary should be greater than 6500
Only if both the above conditions are evaluated as TRUE, v_dept no is set to 60.
Consider the following example:

IF v_departnment = '60" OR v_hiredate > '01-Dec-1999' THEN
v_mgr = 101;
END | F;

In the above example, the | F statement has two conditions to evaluate:
» Department ID should be 60
» Hire date should be greater than 01-Dec-1999
If either of the above conditions are evaluated as TRUE, v_ngr isset to 101.

Oracle9i: Program with PL/SQL 4-6

| F- THEN- ELSE Statement Execution Flow

TRUE NOT TRUE
| F condition
THEN actions ELSE actions
(including further I F (including further I F
statements) statements)
\ 4 \
4-7 Copyright © Oracle Corporation, 2001. All rights reserved.

| F- THEN- ELSE Statement Execution Flow

While writing an | F construct, if the conditionis FALSE or NULL, you can use the EL SE clauseto
carry out other actions. Aswith thesimple | F statement, control resumes in the program from the END
| F clause. For example:

| F conditi onl THEN
st at enent 1;

ELSE
st at enent 2;

END | F;

Nested | F Statements

Either set of actions of the result of thefirst | F statement can include further | F statements before
specific actions are performed. The THEN and EL SE clauses can include | F statements. Each nested
| F statement must be terminated with a corresponding END | F clause.

| F conditi onl THEN
st at enent 1;
ELSE
| F conditi on2 THEN
st at enent 2;
END | F;
END | F;

Oracle9i: Program with PL/SQL 4-7

| F- THEN- ELSE Statements

Set a Boolean flag to TRUE if the hire date is greater
than five years; otherwise, set the Boolean flag to

FALSE.

DECLARE
v_hire_date DATE := '12-Dec-1990';
v_five_years BOOLEAN,

BEG N

| F MONTHS_BETWEEN(SYSDATE, v_hi re_date)/12 > 5 THEN
v_five_years : = TRUE;

ELSE
v_five_years : = FALSE;
END | F;
4-8 Copyright © Oracle Corporation, 2001. All rights reserved.

| F- THEN- ELSE Statements: Example

In the example on the dlide, the MONTHS _BETWEEN function is used to find out the differencein
months between the current date and thev _hi r e_dat e variable. Because theresult isthe
difference of the number of months between the two dates, the resulting valueis divided by 12 to
convert theresult into years. If the resulting value is greater than 5, the Boolean flag is set to TRUE;
otherwise, the Boolean flag is set to FALSE.

Consider the following example: Check thevalueinthe v_enane variable. If thevalueisKing, set
thev_j ob variableto AD_PRES. Otherwise, set thev_j ob variableto ST_CLERK.

IF v_enane = 'King' THEN
v_job = ' AD PRES';
ELSE
v_job = 'ST CLERK ;
END | F;

Oracle9i: Program with PL/SQL 4-8

| F- THEN- ELSI F
Statement Execution Flow

| F condition
NOT TRUE

ELSI F
condition

THEN actions

TRUE NOT TRUE
THEN actions EL_SE
actions
Y A4 v
A
4-9 Copyright © Oracle Corporation, 2001. All rights reserved.

| F- THEN- ELSI F Statement Execution Flow

Sometimes you want to select an action from several mutually exclusive alternatives. Thethird form of
| F statement uses the keyword ELSI F (not ELSEI F) to introduce additional conditions, as follows:

I F conditionl THEN
sequence_of st atenentsl;
ELSI F condition2 THEN
sequence_of st at enents2;
ELSE
sequence_of st at enents3;
END | F;

Oracle9i: Program with PL/SQL 4-9

| F- THEN- ELSI F Statement Execution Flow (continued)

If thefirst condition is false or null, the ELSI F clause tests another condition. An | F statement can
have any number of ELSI F clauses; the final EL SE clauseis optional. Conditions are evaluated one
by one from top to bottom. If any condition is true, its associated sequence of statements is executed
and control passes to the next statement. If all conditions are false or null, the sequence in the EL SE
clauseis executed. Consider the following example: Determine an employee’ s bonus based upon the
employee’s department.

IF v_deptno = 10 THEN

v_bonus : = 5000;
ELSIF v_deptno = 80 THEN

v_bonus : = 7500;

ELSE
v_bonus : = 2000;
END | F;

Note: In case of multiple| F—ELSI F statements only the first true statement is processed.

Oracle9i: Program with PL/SQL 4-10

IF-THEN-ELSIF Statements

For a given value, calculate a percentage of that value
based on a condition.

Example:

| F v_start > 100 THEN

v_start := 0.2 * v_start,
ELSIF v_start >= 50 THEN
v_start := 0.5 * v_start,
ELSE
v_start := 0.1 * v_start,
END | F;
4-11 Copyright © Oracle Corporation, 2001. All rights reserved.

| F- THEN- ELSI F Statements

When possible, usethe ELSI F clause instead of nesting | F statements. The codeis easier to read and
understand, and thelogic is clearly identified. If the action in the EL SE clause consists purdy of
another | F statement, it is more convenient to usethe ELSI F clause. This makes the code clearer by
removing the need for nested END | F statements at the end of each further set of conditions and
actions.

Example

| F conditi onl THEN
st at enent 1;

ELSI F conditi on2 THEN
st at enent 2;

ELSI F condi ti on3 THEN
st at enent 3;

END | F;

Theexample | F- THEN- ELSI F statement above is further defined as follows:

For a given value, calculate a percentage of the original value. If the value is more than 100, then the
calculated value is two times the starting value. If the valueis between 50 and 100, then the calculated
valueis 50% of the starting value. If the entered valueis less than 50, then the calculated valueis 10%
of the starting value.

Note: Any arithmetic expression containing null values evaluates to null.

Oracle9i: Program with PL/SQL 4-11

CASE Expressions

* A CASE expression selects a result and returns it.

* To select the result, the CASE expression uses an
expression whose value is used to select one of
several alternatives.

CASE sel ect or
WHEN expressionl THEN resultl
WHEN expressi on2 THEN result 2

WHEN expressi onN THEN resul t N
[ELSE resul t N+1;]
END;

4-12 Copyright © Oracle Corporation, 2001. All rights reserved.

CASE Expressions

A CASE expression selects aresult and returnsit. To select the result, the CASE expression uses a
selector, an expression whose value is used to sdect one of several alternatives. The sdector is
followed by one or more VWHEN clauses, which are checked sequentially. The value of the sel ector
determines which clause is executed. If the value of the selector equals the value of a WHEN-clause
expression, that WHEN clauseis executed.

PL/SQL also provides a searched CASE expression, which has the form:
CASE

WHEN search_conditionl THEN resultl

WHEN search_conditi on2 THEN result2

WHEN search_condi ti onN THEN resul tN
[ELSE resul t N+1;]
END;
/

A searched CASE expression has no sdlector. Also, its WHEN clauses contain search conditions that
yield a Boolean value, not expressions that can yield a value of any type.

Oracle9i: Program with PL/SQL 4-12

CASE Expressions: Example

SET SERVEROUTPUT ON
DECLARE
v_grade CHAR(1l) := UPPER('&p_grade');
v_appr ai sal VARCHAR2(20) ;
BEG N
v_appraisal :=
CASE v_grade
WHEN ' A" THEN ' Excel | ent’
WHEN 'B' THEN ' Very Good’
WHEN ' C THEN ' Good'
ELSE ' No such grade'
END;
DBVS OQUTPUT. PUT _LINE (' Grade: '|| v_grade || '
Appraisal ' || v_appraisal);
END;
/
4-13 Copyright © Oracle Corporation, 2001. All rights reserved.

CASE Expressions: Example

In the example on the dlide, the CASE expression uses the valueinthev__gr ade variable asthe
expression. This value is accepted from the user using a substitution variable. Based on the value
entered by the user, the CASE expression evaluates the value of thev_appr ai sal variable based on

thevalue of thev_gr ade value. The output of the above example will be as follows:

old 2:v_grade CHAE(1) = UPPEE(&p grade");
new 2:v_grade CHAE(1) =TTPPEE("a";

Grade: & Appradsal Excellent

PLAZQL procedure successfully completed.

Oracle9i: Program with PL/SQL 4-13

CASE Expressions: Example (continued)

If the example on the dide is written using a searched CASE expression it will look likethis:
REM When prompted, supply p_grade = ain the code below.

DECLARE
v_grade CHAR(1) := UPPER('é&p grade');
v_apprai sal VARCHAR2(20);

BEG N
v_appraisal :=
CASE
WHEN v_grade = '"A" THEN ' Excel | ent’
WHEN v_grade = 'B' THEN ' Very Good'
WHEN v_grade = 'C THEN ' Good'
ELSE ' No such grade’
END;
DBVS_QUTPUT. PUT_LI NE
("Gade: '|| v_grade || ' Appraisal ' || v_appraisal);
END;

/

Oracle9i: Program with PL/SQL 4-14

Handling Nulls

When working with nulls, you can avoid some
common mistakes by keeping in mind the following

rules:

* Simple comparisons involving nulls always yield
NULL.

* Applying the logical operator NOT to a null yields
NULL.

* |n conditional control statements, if the condition
yields NULL, its associated sequence of

statements is not executed.

4-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Handling Nulls

In the following example, you might expect the sequence of statements to execute because x and y
seem unequal. But, nulls are indeterminate. Whether or not x is equal to y is unknown. Therefore, the
| F condition yields NULL and the sequence of statements is bypassed.

X = b5;

y = NULL;

IF x !'=y THEN -- yields NULL, not TRUE
sequence_of statenents; -- not executed

END | F;

In the next example, you might expect the sequence of statements to execute because a and b seem
equal. But, again, that is unknown, so the | F condition yields NULL and the sequence of statementsis
bypassed.

a = NULL;

b := NULL;

IFa=DbTHEN -- yields NULL, not TRUE
sequence_of statenents; -- not executed

END | F;

Oracle9i: Program with PL/SQL 4-15

Logic Tables

Build a simple Boolean condition with a comparison

operator.
AND [TRUE |FALSE | NULL OR | TRUE [FALSE | NULL NOT
TRUE | TRUE |FALSE | NULL | [TRUE | TRUE | TRUE [TRUE TRUE [FALSE
FALSE |FALSE |FALSE [FALSE| |FALSE | TRUE [FALSE | NULL FALSE | TRUE
NULL | NULL |[FALSE | NULL | | NULL | TRUE | NULL | NULL NULL | NULL

4-16

Copyright © Oracle Corporation, 2001. All rights reserved.

Boolean Conditions with Logical Operators
Y ou can build a simple Boolean condition by combining number, character, or date expressions with

comparison operators.

Y ou can build a complex Boolean condition by combining simple Boolean conditions with the logical

operators AND, OR, and NOT. In the logic tables shown in the slide:

o FALSE takes precedencein an AND condition and TRUE takes precedence in an OR condition.

* ANDreturns TRUE only if both of its operands are TRUE.
* ORreurns FALSE only if both of its operands are FALSE.

* NULL AND TRUE always evaluate to NULL because it is not known whether the second operand

evaluates to TRUE or not.

Note: The negation of NULL (NOT NULL) resultsin anull value because null values are

indeterminate.

Oracle9i: Program with PL/SQL 4-16

Boolean Conditions

What is the value of V_FLAGIn each case?

v _flag := v_reorder_flag AND v_avail abl e_fl ag;
V_RECRDER _FLAG V_AVAI LABLE FLAG V_FLAG
TRUE TRUE ?
TRUE FALSE ?
NULL TRUE ?
NULL FALSE ?
4-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Building Logical Conditions
The AND logic table can help you evaluate the possibilities for the Boolean condition on the slide.

Answers
1. TRUE
2. FALSE
3. NULL
4. FALSE

Oracle9i: Program with PL/SQL 4-17

lterative Control: LOOP Statements

* Loops repeat a statement or sequence of
statements multiple times.

®* There are three loop types:

— Basic loop
— FORIloop
— WHI LE loop

4-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Iterative Control: LOOP Statements

PL/SQL provides a number of facilities to structure loops to repeat a statement or sequence of
statements multiple times.

Looping constructs are the second type of control structure. PL/SQL provides the following types of
loops:

» Basic loop that perform repetitive actions without overall conditions

* FORIloops that perform iterative control of actions based on a count

» WHI LE loops that perform iterative control of actions based on a condition

Usethe EXI T statement to terminate loops.
For more information, refer to PL/SQL User’s Guide and Reference, “ Control Structures.”
Note: Another type of FOR LOOP, cursor FOR LOCP, is discussed in a subsequent lesson.

Oracle9i: Program with PL/SQL 4-18

Basic Loops

Syntax:

LOOP -- delimter

st at enent 1; -- statenents

EXIT [WHEN condi ti on]; -- EXIT statenent
END LOOP, .- deliniter
conditi on is a Bool ean vari abl e or

expression (TRUE, FALSE, or NULL);

4-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Basic Loops

The simplest form of LOOP statement is the basic (or infinite) loop, which encloses a sequence of
statements between the keywords LOOP and END LOCOP. Each time the flow of execution reaches the
END LOOP statement, control is returned to the corresponding L OOP statement above it. A basic loop
allows execution of its statement at least once, even if the condition is already met upon entering the
loop. Without the EXI T statement, the loop would be infinite.

The EXI T Statement

You can usethe EXI T statement to terminate aloop. Control passes to the next statement after the
END LOOP statement. You canissue EXI T either asan action withinan | F statement or as a stand-
alone statement within the loop. The EXI T statement must be placed inside aloop. In the latter case,
you can attach a WHEN clause to allow conditional termination of the loop. When the EXI T statement
is encountered, the condition in the WHEN clause is evaluated. If the condition yields TRUE, the loop
ends and control passes to the next statement after the loop. A basic loop can contain multiple EXI T
statements.

Oracle9i: Program with PL/SQL 4-19

Basic Loops

Example:
DECLARE
v_country_id | ocations.country i dWYPE : = ' CA";
v _location_ id | ocations. | ocation_i d%IYPE;
v_counter NUMBER(2) : = 1;
vV_city | ocations.city%YPE := 'Mntreal ';
BEG N

SELECT MAX(| ocation_id) INTO v_|location_id FROM | ocations
WHERE country_id = v_country_id;
LOOP
I NSERT | NTO | ocations(l ocation_id, city, country_id)
VALUES((v_l ocation_id + v_counter),v_city, v_country_id);
v_counter := v_counter + 1;
EXIT WHEN v_counter > 3;
END LOOP;
END;
/

4-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Basic Loops (continued)

The basic loop example shown on the dlide is defined as follows: Insert three new locations IDs for the
country code of CA and the city of Montreal.

Note: A basic loop allows execution of its statements at |east once, even if the condition has been met
upon entering the loop, provided the condition is placed in the loop so that it is not checked until after
these statements. However, if the exit condition is placed at the top of the loop, before any of the other
executable statements, and that condition is true, the loop will exit and the statements will never
execute.

Oracle9i: Program with PL/SQL 4-20

VH LE Loops

Syntax:

VWHI LE conditi on LOOP -
st at ement 1;
st at ement 2;

Condition is
evaluated at the
beginning of
each iteration.

END LOOP;

Use the WHI LE loop to repeat statements while a
condition is TRUE.

4-21 Copyright © Oracle Corporation, 2001. All rights reserved.

VWHI LE Loops

Y ou can usethe VWHI LE loop to repeat a sequence of statements until the controlling condition is no
longer TRUE. The condition is evaluated at the start of each iteration. Theloop terminates when the
condition is FALSE. If the condition is FALSE at the start of the loop, then no further iterations are
performed.

In the syntax:
condition isaBoolean variable or expression (TRUE, FALSE, or NULL).
statement can be one or more PL/SQL or SQL statements.

If the variables involved in the conditions do not change during the body of the loop, then the
condition remains TRUE and the loop does not terminate.

Note: If the condition yields NULL, the loop is bypassed and control passes to the next statement.

Oracle9i: Program with PL/SQL 4-21

VH LE Loops

Example:

DECLARE
v_country_id | ocations.country_ idWYPE := "'CA";
v_location_id | ocations. | ocation_i d%I'YPE;
vV_city | ocations.city%YPE := 'Montreal ' ;
v_counter NUMBER = 1;

BEG N

SELECT MAX(l ocation_id) INTO v_|location_id FROM | ocations
WHERE country_id = v_country_id;
VWH LE v_counter <= 3 LOOP
I NSERT | NTO | ocations(l ocation_id, city, country_id)
VALUES((v_location_id + v_counter), v_city, v_country_id);
v_counter := v_counter + 1;
END LOOP;
END;
/

4-22 Copyright © Oracle Corporation, 2001. All rights reserved.

WHI LE Loops (continued)

In the example on the dlide, three new locations IDs for the country code of CA and the city of
Montreal are being added.

With each iteration through the WHI LE loop, acounter (v__count er) isincremented. If the number
of iterations is less than or equal to the number 3, the code within the loop is executed and arow is
inserted into the LOCATI ONS table. After the counter exceeds the number of items for this location,
the condition that controls the loop evaluates to FAL SE and the loop is terminated.

Oracle9i: Program with PL/SQL 4-22

FOR Loops

Syntax:

FOR counter | N [REVERSE]
| ower bound. . upper _bound LOCOP
st at enent 1,
st at enent 2;

END LOOP;

* Use a FORIoop to shortcut the test for the number
of iterations.

* Do not declare the counter; it is declared

implicitly.
* 'l ower bound .. upper bound'is required
syntax.
4-23 Copyright © Oracle Corporation, 2001. All rights reserved.

FOR Loops

FOR loops have the same general structure as the basic loop. In addition, they have a control statement
before the LOOP keyword to determine the number of iterations that PL/SQL performs. In the syntax:

counter isan implicitly declared integer whose value automatically increases or
decreases (decreases if the REVERSE keyword is used) by 1 on each iteration of the
loop until the upper or lower bound is reached.

REVERSE causes the counter to decrement with each iteration from the upper bound to the
lower bound. (Notethat the lower bound is still referenced first.)

lower _bound specifies the lower bound for the range of counter values.
upper_bound specifies the upper bound for the range of counter values.
Do not declare the counter; it is declared implicitly as an integer.

Note: The sequence of statementsis executed each time the counter is incremented, as determined by
the two bounds. The lower bound and upper bound of the loop range can be literals, variables, or
expressions, but must evaluate to integers. The lower bound and upper bound areinclusive in the loop
range . If the lower bound of the loop range evaluates to a larger integer than the upper bound, the
sequence of statements will not be executed, provided REVERSE has not been used. For example the
following, statement is executed only once:

FORi IN 3..3 LOOP statenentl; END LOOP;

Oracle9i: Program with PL/SQL 4-23

FOR Loops

Insert three new locations IDs for the country code of CA
and the city of Montreal.

DECLARE
v_country_id | ocations.country i dWYPE : = ' CA';
v_location_ id | ocations. | ocation_i d%YPE;
vV_Ccity | ocations.city%dYPE := 'Mntreal ';

BEG N

SELECT MAX(l ocation_id) INTO v_Ilocation_id
FROM | ocat i ons
WHERE country_id = v_country_id;

FORi IN1..3 LOOP
I NSERT | NTO | ocations(l ocation_id, city, country_id)

VALUES((v_location_id + i), v_city, v_country_id);
END LOOP;
END;
/

4-24 Copyright © Oracle Corporation, 2001. All rights reserved.

FOR Loops (continued)
The example shown on the slide is defined as follows: Insert three new locations for the country code
of CA and the city of Montreal.

Thisis done using a FOR loop.

Oracle9i: Program with PL/SQL 4-24

FOR Loops

Guidelines

* Reference the counter within the loop only; itis
undefined outside the loop.

* Do not reference the counter as the target of an
assignment.

4-25 Copyright © Oracle Corporation, 2001. All rights reserved.

FOR Loops (continued)
Thedlide lists the guidelines to follow while writinga FOR Loop.

Note: While writing a FOR loop, the lower and upper bounds of a LOOP statement do not need to be
numeric literals. They can be expressions that convert to numeric values.

Example
DECLARE
v_| ower NUMBER :
V_upper NUVBER
BEG N
FOR i INv_lower..v _upper LOOP

1;
100;

END LOOP:
END;

Oracle9i: Program with PL/SQL 4-25

Guidelines While Using Loops

* Use the basic loop when the statements inside the
loop must execute at least once.

* Usethe WHI LE loop if the condition has to be
evaluated at the start of each iteration.

* Use aFORIoop if the number of iterations is known.

4-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Guidelines While Using Loops

A basic loop allows execution of its statement at least once, even if the condition is already met upon
entering the loop. Without the EXI T statement, the loop would be infinite.

Y ou can usethe WHI LE loop to repeat a sequence of statements until the controlling condition is no
longer TRUE. The condition is evaluated at the start of each iteration. Theloop terminates when the
condition is FALSE. If the condition is FALSE at the start of the loop, then no further iterations are
performed.

FOR loops have a control statement before the LOOP keyword to determine the number of iterations
that PL/SQL performs. Use a FOR loop if the number of iterations is predetermined.

Oracle9i: Program with PL/SQL 4-26

Nested Loops and Labels

* Nest loops to multiple levels.

* Use labels to distinguish between blocks and
loops.

* EXxit the outer loop with the EXI T statement that
references the label.

4-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Nested Loops and Labels

Y ou can nest loops to multiple levels. You can nest FOR, VHI LE, and basic loops within one another.
Thetermination of a nested loop does not terminate the enclosing loop unless an exception was raised.
However, you can label loops and exit the outer loop with the EXI T statement.

Labd names follow the same rules as other identifiers. A labd is placed before a statement, either on
the same line or on a separate line. Labd loops by placing the labdl before the word L OOP within label
delimiters (<<labd>>).

If theloop is labeled, the label name can optionally be included after the END L OOP statement for
clarity.

Oracle9i: Program with PL/SQL 4-27

Nested Loops and Labels

BEG N

<<Qut er _I| oop>>
LOOP
v_counter := v_counter+1;

EXIT WHEN v_count er >10;
<<Il nner _| oop>>
LOOP

EXIT Quter | oop WHEN total _done = 'YES' ;
-- Leave both | oops

EXIT WHEN i nner _done = ' YES ;

-- Leave inner |loop only

ENiZ). LOCP | nner _| oop;

ENiZ). LCI]3 Qut er _| oop;
END;

4-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Nested Loops and Labels (continued)

In the example on the dlide, there are two loops. The outer loop isidentified by the label,

<<Qut er _Loop>> and theinner loop isidentified by the labd <<I nner _Loop>>. Theidentifiers
are placed before the word LOOP within label delimiters (<<label>>). Theinner loop is nested within
the outer loop. The label names areincluded after the END LOCP statement for clarity.

Oracle9i: Program with PL/SQL 4-28

Summary

In this lesson you should have learned to:

Change the logical flow of statements by using
control structures.

4-29

Conditional (I F statement)
CASE Expressions

Loops:

— Basic loop

— FORIloop
— WHI LE loop

EXI T statements

Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

A conditional control construct checks for the validity of a condition and performs a corresponding
action accordingly. You usethel F construct to perform a conditional execution of statements.

An iterative control construct executes a sequence of statements repeatedly, as long as a specified
condition holds TRUE. Y ou use the various loop constructs to perform iterative operations.

Oracle9i: Program with PL/SQL 4-29

Practice 4 Overview

This practice covers the following topics:

* Performing conditional actions using the | F
statement

* Performing iterative steps using the loop structure

4-30 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 4 Overview

In this practice, you create PL/SQL blocks that incorporate loops and conditional control structures.
The practices test the understanding of the student about writing various | F statements and L OOP
constructs.

Oracle9i: Program with PL/SQL 4-30

Practice 4

1. Executethecommandinthefilel ab04 1. sql to createthe MESSAGES table. Writea
PL/SQL block to insert numbers into the MESSACES table.

a. Insert the numbers 1 to 10, excluding 6 and 8.
b. Commit before the end of the block.

C.

Sdect from the MESSAGES table to verify that your PL/SQL block worked.

RESULTS

g rows selected.

2. Create a PL/SQL block that computes the commission amount for a given employee based
on the employee' s salary.

a. Usethe DEFI NE command to provide the employee ID. Pass the value to the PL/SQL

e
f.

block through a iSQL *Plus substitution variable.
DEFI NE p_enpno = 100

If the employee’ s salary is less than $5,000, display the bonus amount for the employee
as 10% of the salary.

If the employee’s salary is between $5,000 and $10,000, display the bonus amount for
the employee as 15% of the salary.

If the employee’ s salary exceeds $10,000, display the bonus amount for the employee as
20% of the salary.

If the employee’ s salary is NULL, display the bonus amount for the employee as 0.

Test the PL/SQL block for each case using the following test cases, and check each
bonus amount.

Note: Include SET VERI FY OFF inyour solution.

Employee Number Salary Resulting Bonus
100 24000 4800
149 10500 2100
178 7000 1050

Oracle9i: Program with PL/SQL 4-31

Practice 4 (continued)
If you have time, complete the following exercises:

3. Create an EMP table that isareplica of the EMPLOYEES table. Y ou can do this by executing the
script| ab04_3. sql . Add a new column, STARS, of VARCHAR2 data type and length of 50
to the EVP table for storing asterisk (*).

Table altered.

4. CreateaPL/SQL block that rewards an employee by appending an asterisk in the STARS
column for every $1000 of the employee' s salary. Save your PL/SQL block in afile called
p4g4. sql by clickingontheSave Scri pt button. Remember to save the script with a

. sgl extension.

a. Usethe DEFI NE command to provide the employee ID. Pass the value to the PL/SQL
block through aiSQL *Plus substitution variable.

DEFI NE p_enpno=104
b. Initializeav_ast eri sk variable that contains a NULL.

c. Append an asterisk to the string for every $1000 of the salary amount. For example, if
the employee has a salary amount of $8000, the string of asterisks should contain eight
asterisks. If the employee has a salary amount of $12500, the string of asterisks should
contain 13 asterisks.

d. Update the STARS column for the employee with the string of asterisks.
e. Commit.

f. Test theblock for thefollowing values:
DEFI NE p_enpno=174
DEFI NE p_enpno=176

g. Display the rows from the EMP table to verify whether your PL/SQL block has executed

successfully.
| EMPLOYEE_ID | SALARY | STARS
| 104 | BOOD [~
| 174 | 11000 [
| 176 | BEO0 [

Note: SET VERI FY OFF inthe PL/SQL block

Oracle9i: Program with PL/SQL 4-32

Working with Composite
Data Types

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

* Create user-defined PL/SQL records

* Create arecord with the Y“ROM YPE attribute
* Create an | NDEX BY table

* Create an | NDEX BY table of records

e Describe the difference between records, tables,
and tables of records

5-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim
In this lesson, you learn more about composite data types and their uses.

Oracle9i: Program with PL/SQL 5-2

Composite Data Types

* Are of two types:
— PL/SQL RECORDs

— PL/SQL Collections
— | NDEX BY Table

— Nested Table
— VARRAY

® Contain internal components
* Arereusable

5-3 Copyright © Oracle Corporation, 2001. All rights reserved.

RECORD and TABLE Data Types

Like scalar variables, composite variables have a data type. Composite data types (also known as
collections) are RECORD, TABLE, NESTED TABLE, and VARRAY. Y ou use the RECORD data type to
treat related but dissimilar dataasa logical unit. You use the TABLE data type to reference and
manipulate collections of data as awhole object. The NESTED TABLE and VARRAY data types are
covered in the Advanced PL/SQL course.

A record is a group of related data items stored as fields, each with its own name and datatype. A
table contains a column and a primary key to give you array-like access to rows. After they are
defined, tables and records can be reused.

For more information, refer to PL/SQL User’s Guide and Reference, “ Collections and Records.”

Oracle9i: Program with PL/SQL 5-3

5-4

PL/SQL Records

®* Must contain one or more components of any scalar,
RECORD, or | NDEX BY table data type, called fields

* Are similar in structure to records in a third
generation language (3GL)

* Are notthe same as rows in a database table
* Treat a collection of fields as a logical unit

* Are convenient for fetching a row of data from a table
for processing

Copyright © Oracle Corporation, 2001. All rights reserved.

PL/SQL Records

A record is agroup of related data items stored in fields, each with its own name and data type. For
example, suppose you have different kinds of data about an employee, such as name, salary, hire date,
and so on. Thisdatais dissimilar in type but logically related. A record that contains such fields as the
name, salary, and hire date of an employee allows you to treat the data as alogical unit. When you
declare arecord type for these fid ds, they can be manipulated as a unit.

Each record defined can have as many fields as necessary.

Records can be assigned initial values and can be defined as NOT NULL.
Fields without initial values areinitialized to NULL.

The DEFAULT keyword can also be used when defining fields.

Y ou can define RECORD types and declare user-defined records in the declarative part of any
block, subprogram, or package.

Y ou can declare and reference nested records. One record can be the component of another
record.

Oracle9i: Program with PL/SQL 5-4

Creating a PL/SQL Record

Syntax:

TYPE type_nanme | S RECORD
(field declaration[, field declaration].);
identifier t ype_nane;

Where field_declaration is:

field name {field type | variabl e%dYPE
| table.colum%YPE | tabl e¥RONMYPE}
[[NOT NULL] {:=| DEFAULT} expr]

5-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Defining and Declaring a PL/SQL Record
To create arecord, you define a RECORD type and then declare records of that type.

In the syntax:

type_name is the name of the RECORD type. (Thisidentifier is used to declare
records.)

field_name is the name of a field within the record.

field_type is the datatype of thefidd. (It represents any PL/SQL data type
except REF CURSOR. You can use the % YPE and %R0WTYPE
attributes.)

expr isthefield_type or aninitial value.

TheNOT NULL constraint prevents assigning nulls to those fields. Be suretoinitialize NOT NULL

fidds.

Oracle9i: Program with PL/SQL 5-5

Creating a PL/SQL Record

Declare variables to store the name, job, and salary of
a new employee.

Example:

TYPE enp_record_type IS RECORD
(last _nane VARCHAR2(25),

job_id VARCHAR2(10) ,
sal ary NUVBER(8, 2)) ;
enp_record enp_record_type;
5-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a PL/SQL Record

Field declarations are like variable declarations. Each field has a unique name and a specific data type.
There are no predefined data types for PL/SQL records, asthere are for scalar variables. Therefore,
you must create the record type first and then declare an identifier using that type.

In the example on the dlide, a EMP_ RECORD_TYPE record type is defined to hold the values for the
| ast _nane,j ob_id,andsal ary. Inthe next step, arecord EMP_RECORD, of thetype
EMP_RECORD_TYPE isdeclared.

The following example shows that you can use the %I YPE attribute to specify afield datatype:
DECLARE
TYPE enp_record_type |'S RECORD

(empl oyee_id NUMBER(6) NOT NULL := 100,
| ast _nane enpl oyees. | ast _nanme%lYPE,
job_id enpl oyees. j ob_i dWYPE) ;
enp_record enp_record_type;

Note: You can add the NOT NULL constraint to any field declaration to prevent assigning nulls to
that field. Remember, fields declared as NOT NULL must beinitialized.

Oracle9i: Program with PL/SQL 5-6

PL/SQL Record Structure

d3 (data type)

Example:

Fieldl (datatype) Field2 (datatype) Field3 (datatype)

employee id number(6) last name varchar2(25) job_id varchar2(10)

5-7 Copyright © Oracle Corporation, 2001. All rights reserved.

PL/SQL Record Structure

Fieldsin a record are accessed by name. To reference or initialize an individual fied, use dot notation

and the following syntax:

record nane.field name

For example, you referencethej ob_i d fieldintheenp_r ecor d record as follows:
enp_record.job_id ...

Y ou can then assign a value to the record field as follows:
enp_record.job_id :="'ST CLERK ;

In ablock or subprogram, user-defined records are instantiated when you enter the block or
subprogram and cease to exist when you exit the block or subprogram.

Oracle9i: Program with PL/SQL 5-7

The “ROMYPE Attribute

* Declare avariable according to a collection of
columns in a database table or view.

* Prefix “ROMYPE with the database table.

* Fields in the record take their names and data
types from the columns of the table or view.

5-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Declaring Records with the Y%RON YPE Attribute

To declare arecord based on a collection of columns in a database table or view, you use the
YRONTYPE attribute. The fields in the record take their names and data types from the columns of the
table or view. Therecord can also store an entire row of data fetched from a cursor or cursor variable.

In the following example, arecord is declared using ¥R0OM YPE as a data type specifier.

DECLARE
enp_record enpl oyees¥RONYPE;

Theenp_r ecor d record will have a structure consisting of the following fidds, each representing a
column in the EMPLOYEES table.

Note: Thisis not code, but simply the structure of the composite variable.

(enpl oyee_id NUVBER(6) ,
first_nanme VARCHAR2(20) ,
| ast _nane VARCHAR2(20) ,
enai | VARCHAR2(20) ,
phone_nunber VARCHAR2(20) ,
hire _date DATE,
sal ary NUMBER(8, 2),
comi ssi on_pct NUMBER(2, 2),
manager i d NUMBER(6) ,
department _id NUMBER(4))

Oracle9i: Program with PL/SQL 5-8

Declaring Records with the YRONYPE Attribute (continued)

Syntax
DECLARE
i dentifier r ef er ence%ROWYPE;
wher e identifier is the name chosen for the record as awhole.

reference is the name of thetable, view, cursor, or cursor
variable on which the record is to be based. The table or view must
exist for thisreference to be valid.

To reference an individual fidd, you use dot notation and the following syntax:
record _nane. field name
For example, you referencethecomni ssi on_pct fieddintheenp_record record as follows:
enp_record. conmi ssi on_pct
Y ou can then assign a value to the record field as follows:
enp_record. comni ssi on_pct:= . 35;
Assigning Values to Records

You can assign a list of common values to arecord by using the SELECT or FETCH statement. Make
sure that the column names appear in the same order asthefields in your record. Y ou can also assign
one record to another if they have the same data type. A user-defined record and a ¥6R0WI'YPE record
never have the same data type.

Oracle9i: Program with PL/SQL 5-9

Advantages of Using “ROM YPE

* The number and data types of the underlying
database columns need not be known.

* The number and data types of the underlying
database column may change at run time.

* The attribute is useful when retrieving a row with
the SELECT * statement.

5-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Advantages of Using YR0OMYPE

The advantages of using the “R0OWT'YPE attribute are listed on the slide. Use the RO YPE attribute
when you are not sure about the structure of the underlying database table. Using this attribute also
ensures that the data types of the variables declared using this attribute change dynamically, in case the
underlying tableis altered. This attribute is particularly useful when you want to retrieve an entire row
from atable. In the absence of this attribute, you would be forced to declare a variable for each of the
columns retrieved by the SELECT * statement.

Oracle9i: Program with PL/SQL 5-10

The “ROMYPE Attribute

Examples:

Declare a variable to store the information about a
department from the DEPARTMENTS table.

dept record depart ment s¥%ROWM YPE;

Declare a variable to store the information about an
employee from the EMPLOYEES table.

enp_record enpl oyees YRON YPE;

5-11 Copyright © Oracle Corporation, 2001. All rights reserved.

The YROW YPE Attribute

Thefirst declaration on the slide creates a record with the same fiedld names and field data types as a
row in the DEPARTMENTS table. The fields are DEPARTMVENT _| D, DEPARTMENT _NAME,
MANAGER | D, and LOCATI ON_I D. The second declaration creates a record with the same field
names, fidd data types, and order asarow in the EMPLOYEES table. Thefields are EMPLOYEE | D,
FI RST_NAME, LAST_NAME, EMAI L, PHONE_NUMBER, HI RE_DATE, JOB_I| D, SALARY,
COWM SSI ON_PCT, MANAGER | D, DEPARTMENT _I D.

Oracle9i: Program with PL/SQL 5-11

The Y“ROWYPE Attribute (continued)

In the following example, an employeeis retiring. Information about a retired employeeis added to a
table that holds information about retired employees. The user supplies the employee’s number. The
record of the employee specified by the user is retrieved from the EMPLOYEES and stored into the
enp_r ec variable, which is declared using the ¥6R0N YPE attribute.

DEFI NE enpl oyee _nunber = 124

DECLARE
enp_rec enpl oyees¥YROWTYPE;

BEG N
SELECT * I NTO enp_rec
FROM enpl oyees
WHERE enpl oyee id = &enpl oyee nunber;
I NSERT I NTO retired _enps(enpno, enane, job, ngr, hiredate,

| eavedate, sal, conm deptno)

VALUES (enp_rec. enpl oyee id, enp rec.last_name, enp_rec.job_id,
enp_rec.manager _id, enp rec.hire date, SYSDATE, enp_rec.salary,
enp_rec.comm ssion_pct, enp_rec.departnent _id);
COW T;

END;

/

Therecord that isinserted into the RETI RED_EMPS table is shown bd ow:

SELECT * FROM RETI RED_EMPS;

|[EMPNO |ENAME | JOB |MGR |HIREDATE |LEAVEDATE |SAL |[COMM |DEPTNO
| 124 |Mourgos |ST_MAN | 100 |[16-NOW-29 |24-SEP-D1 |5800 | | 50

Oracle9i: Program with PL/SQL 5-12

| NDEX BY Tables

* Are composed of two components:
— Primary key of data type Bl NARY | NTEGER

— Column of scalar or record data type

®* Canincrease in size dynamically because they are
unconstrained

5-13 Copyright © Oracle Corporation, 2001. All rights reserved.

| NDEX BY Tables

Objects of the TABLE type are called | NDEX BY tables. They are modeled as (but not the same as)
database tables. | NDEX BY tables use a primary key to provide you with array-like access to rows.

A | NDEX BY table:
e Issimilar toanarray
¢ Must contain two components:
— A primary key of datatype Bl NARY | NTEGER that indexes the | NDEX BY table
— A column of a scalar or record data type, which stores the | NDEX BY table elements
e Canincrease dynamically because it is unconstrained

Oracle9i: Program with PL/SQL 5-13

Creating an | NDEX BY Table

Syntax:

TYPE type_nanme | S TABLE OF
{col um_type | vari abl e%dYPE
| table.col um%YPE} [NOT NULL]
| tabl e. “IROMYPE
[| NDEX BY BI NARY_I NTECER] ;

identifier t ype_nane;
Declare an | NDEX BY table to store names.
Example:

TYPE enane_table type IS TABLE COF
enpl oyees. | ast _nanme% YPE

| NDEX BY BI NARY_| NTECGER;
enane_t abl e enane_t abl e_type;

5-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating a | NDEX BY Table
There are two steps involved in creating a | NDEX BY table.
1. Declarea TABLE datatype.
2. Declare avariable of that datatype.
In the syntax:

type_name isthe name of the TABLE type. (It is atype specifier used in
subsequent declarations of PL/SQL tables.)

column_type isany scalar (scalar and composite) data type such as VARCHAR2,
DATE, NUMBER or %'YPE. (Y ou can use the % YPE attribute to
provide the column datatype.)

identifier isthe name of theidentifier that represents an entire PL/SQL table.

TheNOT NULL constraint prevents nulls from being assigned to the PL/ SQL table of that type. Do
not initialize the | NDEX BY table.

| NDEX- BY tables can have the following e ement types: Bl NARY | NTEGER, BOOLEAN, LONG,
LONG RAW NATURAL, NATURALN,PLS | NTEGER, POSI TI VE, PCSI TI VEN, SI GNTYPE, and
STRI NG | NDEX- BY tables areinitially sparse. That enables you, for example, to store reference data
inan | NDEX- BY table using a numeric primary key asthe index.

Oracle9i: Program with PL/SQL 5-14

| NDEX BY Table Structure

Unique identifier Column
1 Jones
2 Smith
3 Maduro
Bl NARY_| NTEGER Scalar
5-15 Copyright © Oracle Corporation, 2001. All rights reserved.

| NDEX BY Table Structure

Likethe size of a database table, the size of al NDEX BY tableis unconstrained. That is, the number of
rowsinal NDEX BY table can increase dynamically, so that your | NDEX BY table grows as new rows
are added.

| NDEX BY tables can have one column and a unique identifier to that one column, neither of which
can be named. The column can belong to any scalar or record data type, but the primary key must
belong to type Bl NARY | NTEGER. Y ou cannat initialize an | NDEX BY tablein its declaration. An
| NDEX BY tableis not populated at the time of declaration. It contains no keys or no values. An
explicit executable statement is required to initialize (populate) the | NDEX BY table.

Oracle9i: Program with PL/SQL 5-15

Creating an | NDEX BY Table

DECLARE
TYPE enane_table type IS TABLE OF
enpl oyees. | ast _nanme% YPE
| NDEX BY Bl NARY_| NTECGER
TYPE hiredate table type IS TABLE OF DATE
| NDEX BY Bl NARY_| NTECGER

enane_t abl e enane_t abl e _type;

hi redate_tabl e hiredate_t abl e_type;
BEG N

enane_t abl e(1) . = ' CAVERON ;

hi redat e_tabl e(8) := SYSDATE + 7,
| F enanme_t abl e. EXI STS(1) THEN

| NSERT | NTO . ..
END;
/
5-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Referencing an | NDEX BY Table

Syntax:
| NDEX_BY _table name(primary_key value)
wher e primary key value beongstotypeBl NARY | NTEGER

Referencethethirdrow inan | NDEX BY table ENAME TABLE:
enane_t abl e(3)

The magnitude range of a Bl NARY _| NTECER is -2147483647 ... 2147483647, so the primary key
value can be negative. Indexing does not need to start with 1.

Note: Thet abl e. EXI STS(i) statement returns TRUE if arow withindex i isreturned. Usethe
EXI STS statement to prevent an error that israised in reference to a nonexisting table € ement.

Oracle9i: Program with PL/SQL 5-16

Using | NDEX BY Table Methods

The following methods make INDEX BY tables
easier to use:

— EXISTS — NEXT
— COUNT - TRIM
— FIRST and LAST — DELETE
— PRIOR

5-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Using | NDEX BY Table Methods

A | NDEX BY table method is a built-in procedure or function that operates on tables and is called
using dot notation.

Syntax: t abl e_nane. met hod_nane[(paraneters)]

Method Description
EXI STS(n) Returns TRUE if the nth element in a PL/SQL table exists
CQUNT Returns the number of elements that a PL/SQL table currently
contains
FI RST Returns the first and last (smallest and largest) index numbersin a
LAST PL/SQL table. Returns NULL if the PL/SQL tableis empty.
PRI OR(n) Returns the index number that precedesindex nin aPL/SQL table
NEXT(n) Returns the index number that succeedsindex nin aPL/SQL table
TRIM TRI Mremoves one e ement from the end of a PL/SQL table.
TRI M'n) removes n elements from the end of a PL/SQL table.
DELETE DELETE removes al elements from a PL/SQL table.
DELETE(n) removes the nth element from a PL/SQL table.
DELETE(m n) removesall elementsintherangem... nfroma
PL/SQL table.

Oracle9i: Program with PL/SQL 5-17

| NDEX BY Table of Records

* Define a TABLE variable with a permitted PL/SQL
data type.

* Declare a PL/SQL variable to hold department
information.

Example:

DECLARE
TYPE dept _table type | S TABLE OF
depart nent s%ROMYPE
| NDEX BY Bl NARY_| NTECER,
dept _tabl e dept _table type;
-- Each elenent of dept table is a record

5-18 Copyright © Oracle Corporation, 2001. All rights reserved.

| NDEX BY Table of Records

At agiven point of time, al NDEX BY table can store only the details of any one of the columns of a
database table. There is always a necessity to store all the columns retrieved by a query. The | NDEX
BY table of records offer a solution to this. Because only one table definition is needed to hold
information about all of the fidds of a database table, the table of records greatly increases the
functionality of | NDEX BY tables.

Referencing a Table of Records

In the example given on the slide, you can refer to fidds in the DEPT_TABLE record because each
element of thistableis arecord.

Syntax:
tabl e(index).field
Example:
dept tabl e(15).location_id := 1700;
LOCATI ON_| Drepresents afield in DEPT_TABLE.

Note: You can use the YROWN YPE attribute to declare a record that represents arow in a database
table. The difference between the “ROW YPE attribute and the composite data type RECCORD is that
RECORD allows you to specify the datatypes of fields in the record or to declare fieds of your own.

Oracle9i: Program with PL/SQL 5-18

Example of | NDEX BY Table of Records

SET SERVEROUTPUT ON
DECLARE
TYPE enp_table type is table of
enpl oyees%ROMYPE | NDEX BY Bl NARY_| NTEGER;
my_enp_table enp_table type;

v_count NUVBER(3) : = 104;
BEG N

FOR i I N 100..v_count

LOOP

SELECT * INTO ny_enp_tabl e(i) FROM enpl oyees
WHERE enpl oyee id = i;

END LQOCP;
FOR i IN ny_enp_table.FIRST..ny _enp_table. LAST
LOCP
DBVS_OUTPUT. PUT_LI NE(ny_enp_tabl e(i) .l ast_nane);
END LQOCP;
END;
5-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Example | NDEX BY Table of Records

The example on the slide declaresal NDEX BY table of recordsenp_t abl e _t ype to temporarily
store the details of the employees whose EMPLOYEE | D lies between 100 and 104. Using a loop, the
information of the employees from the EMPLOYEES tableis retrieved and stored in the | NDEX BY
table. Another loop is used to print the information regarding the last names from the | NDEX BY table.
Observethe use of the FI RST and LAST methods in the example.

Oracle9i: Program with PL/SQL 5-19

Summary

In this lesson, you should have learned to:

* Define and reference PL/SQL variables of
composite data types:

— PL/SQL records
— | NDEX BY tables
— | NDEX BY table of records

* Define a PL/SQL record by using the ROM YPE
attribute

5-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

A PL/SQL record is a callection of individual fields that represent arow in atable. By using records
you can group the data into one structure and then manipulate this structure as one entity or logical
unit. This helps reduce coding, and keeps the code easier to maintain and understand.

Like PL/SQL records, thetable is another composite data type. | NDEX BY tables are objects of a
TABLE type and look similar to database tables but with a dlight difference. | NDEX BY tablesusea
primary key to give you array-like access to rows. The sizeof al NDEX BY tableis unconstrained.

| NDEX BY tables can have one column and a primary key, neither of which can be named. The
column can have any data type, but the primary key must be of the Bl NARY _| NTECGER type.

A | NDEX BY table of records enhances the functionality of | NDEX BY tables, because only one
table definition is required to hold information about all thefields.

Thefollowing collection methods help generalize code, make collections easier to use, and make your
applications easier to maintain:

EXI STS, COUNT, LI M T, FI RST and LAST, PRI ORand NEXT, TRI M, and DELETE

The %R0OWI'YPE is used to declare a compound variable whose typeis the same as that of arow of a
database table.

Oracle9i: Program with PL/SQL 5-20

Practice 5 Overview

This practice covers the following topics:

* Declaring | NDEX BY tables

®* Processing data by using | NDEX BY tables
* Declaring a PL/SQL record

®* Processing data by using a PL/SQL record

5-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 5 Overview
In this practice, you define, create, and use | NDEX BY tables and a PL/SQL record.

Oracle9i: Program with PL/SQL 5-21

Practice 5
1. Writea PL/SQL block to print information about a given country.
a. Declarea PL/SQL record based on the structure of the COUNTRI ES table.

b. Usethe DEFI NE command to provide the country ID. Pass the value to the PL/SQL
block through a iSQL *Plus substitution variable.

c. Use DBMS QUTPUT. PUT_LI NE to print sdected information about the country. A
sample output is shown below.

Country Id: CA Country Mame: Canada Eegion: 2
PLIZQL procedure successfully completed.

d. Execute and test the PL/SQL block for the countries with the IDs CA, DE, UK, US.

2. Create a PL/SQL block to retrieve the name of each department from the DEPARTMENTS table
and print each department hame on the screen, incorporating an | NDEX BY table. Save the code
inafilecalled p5q2. sql by clickingthe Save Scri pt button. Save the script witha. sql
extension.

a. Declarean| NDEX BY table, MY_DEPT_TABLE, to temporarily store the name of the
departments.

b. Using aloaop, retrieve the name of all departments currently in the DEPARTVENTS table
and storethem inthe | NDEX BY table. Use the following table to assign the value for
DEPARTMENT _| D based on the value of the counter used in the loop.

COUNTER DEPARTMENT_I D
10
20
50
60
80
90
110

N O Of B Wl N -

c. Using another 1oop, retrieve the department names from the | NDEX BY table and print
them to the screen, using DBMS_QUTPUT. PUT _LI NE. The output from the program is
shown on the next page.

Oracle9i: Program with PL/SQL 5-22

Practice 5 (continued)

A drimstration
Idatleting
Shipping
IT

males
Executive
Arccounting
Arccounting
Arccounting
Arccounting
Accounting
Arccounting
Arccounting
Arccounting
Arccounting
Arccounting
Arccounting
Arccounting
Accounting
Arccounting
Arccounting
Accounting
Arccounting
Arccounting
Arccounting
Arccounting
Arccounting
PLAZQL procedure successfully completed.

Oracle9i: Program with PL/SQL 5-23

Practice 5 (continued)
If you have time, complete the following exercise.

3. Modify the block you created in practice 2 to retrieve all information about each department
fromthe DEPARTMENTS table and print the information to the screen, incorporating an | NDEX
BY table of records.

a. Declarean| NDEX BY table, MY_DEPT _TABLE, to temporarily store the number, name,
and location of all the departments.

b. Using aloop, retrieve all department information currently in the DEPARTMENTS table
and storeit inthe | NDEX BY table. Use the following table to assign the value for
DEPARTMENT _| D based on the value of the counter used in the loop. Exit the loop
when the counter reaches the value 7.

COUNTER DEPARTMENT_I D
1 10

20

50

60

80

90

110

N O O Bl WIN

¢. Using another 1oop, retrieve the department information from the | NDEX BY table and
print it to the screen, using DBMS_QUTPUT. PUT_LI NE. A sample output is shown.

Departtnent Mumber: 10 Department Mame: A dmimstration IManager Id: 200 Location Id: 1700
Department Mumber: 20 Department Mame: IMarketing Banager Id: 201 Location Id: 1800
Departtnent Mumber: 50 Department Mame: Shipping Manager Id: 121 Location Id: 1500
Departrnent Mumber: 60 Department Marme: IT Manager Id: 103 Location Id: 1400
Departtnent Mumber: 50 Department Marme: Sales Manager Id: 145 Location Id: 2500
Departtnent Mumber: 20 Department Mame: Executive Manager Id: 100 Location Id: 1700
Department Mumber: 110 Department Mame: Accounting WManager Id: 205 Location Id: 1700
PLAZQL procedure successfiully completed.

Oracle9i: Program with PL/SQL 5-24

Writing Explicit Cursors

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

* Distinguish between an implicit and an explicit
cursor

* Discuss when and why to use an explicit cursor

* Use aPL/SQL record variable
* Write a cursor FORloop

6-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In this lesson, you learn the difference between implicit and explicit cursors. Y ou also learn when and
why to use an explicit cursor. You may need to use a multiple-row SELECT statement in PL/SQL to
process many rows. To accomplish this, you declare and control explicit cursors.

Oracle9i: Program with PL/SQL 6-2

About Cursors

Every SQL statement executed by the Oracle Server
has an individual cursor associated with it:

* Implicit cursors: Declared for all DML and PL/SQL
SELECT statements

* Explicit cursors: Declared and named by the
programmer

6-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Implicit and Explicit Cursors

The Oracle server uses work areas, called private SQL areas, to execute SQL statements and to store
processing information. Y ou can use PL/SQL cursors to name a private SQL area and access its stored
information.

Cursor Type Description

Implicit Implicit cursors are declared by PL/SQL implicitly
for all DML and PL/SQL SELECT statements,
including queries that return only one row.
Explicit For queries that return more than one row, explicit
cursors are declared and named by the programmer
and manipulated through specific statements in the
block’ s executable actions.

The Oracle server implicitly opens a cursor to process each SQL statement not associated with an
explicitly declared cursor. PL/SQL allows you to refer to the most recent implicit cursor as the SQL
cursor.

Oracle9i: Program with PL/SQL 6-3

Explicit Cursor Functions
Table

100 King AD_PRES
101 Kochhar AD VP
102 De Haan AD VP

Active set

Cursor —_—

139 Seo ST _CLERK
140 Patel ST_CLERK

6-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Explicit Cursors
Use explicit cursorsto individually process each row returned by a multiple-row SELECT statement.

The set of rows returned by a multiple-row query is called the active set. Its size is the number of rows
that meet your search criteria. The diagram on the slide shows how an explicit cursor “points’ to the
current row in the active set. This allows your program to process the rows one at atime.

A PL/SQL program opens a cursor, processes rows returned by a query, and then closes the cursor.
The cursor marks the current position in the active set.

Explicit cursor functions:
e Can process beyond the first row returned by the query, row by row
» Keep track of which row is currently being processed
» Allow the programmer to manually control explicit cursorsin the PL/SQL block

Oracle9i: Program with PL/SQL 6-4

Controlling Explicit Cursors

I

! ! Yes

DECLARE > OPEN > FETCH ——> EMPTY? —| CLOSE
* Createa ° ldentify * Load the * Test for * Release
named the active current existing the active
SQL area set row into rows set
variables e Return to
FETCHf
rows are
found
6-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Explicit Cursors (continued)

Now that you have a conceptual understanding of cursors, review the steps to use them. The syntax for
each step can be found on the following pages.

Controlling Explicit Cursors
1. Declarethe cursor by naming it and defining the structure of the query to be performed
within it.
2. Open the cursor. The OPEN statement executes the query and binds any variables that are

referenced. Rows identified by the query are called the active set and are now available for
fetching.

3. Fetch data from the cursor. In the flow diagram shown on the slide, after each fetch you test the
cursor for any existing row. If there are no more rows to process, then you must close the cursor.

4. Closethe cursor. The CLOSE statement releases the active set of rows. It is now possibleto
reopen the cursor to establish a fresh active set.

Oracle9i: Program with PL/SQL 6-5

1. Openthe cursor

Controlling Explicit Cursors
2. Fetch arow

3. Close the Cursor

1. Open the cursor.

€ CU Isor
[] .
— pointer
[}
6-6 Copyright © Oracle Corporation, 2001. All rights reserved.
Explicit Cursors (continued)
Y ou use the OPEN, FETCH, and CLOSE statements to control a cursor.

The OPEN statement executes the query associated with the cursor, identifies the result set, and

positions the cursor before the first row.

Oracle9i: Program with PL/SQL 6-6

Controlling Explicit Cursors

1. Openthe cursor
2. Fetch arow
3. Close the Cursor

2. Fetch arow using the cursor.

_
Cursor
pointer
Continue until empty.
6-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Explicit Cursors (continued)

The FETCH statement retrieves the current row and advances the cursor to the next row until ether
there are no more rows or until the specified condition is met.

Oracle9i: Program with PL/SQL 6-7

Controlling Explicit Cursors

1. Open the cursor
2. Fetch arow
3. Close the Cursor

3. Close the cursor.

CEE———
Cursor
pointer
6-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Explicit Cursors (continued)
Close the cursor when the last row has been processed. The CLOSE statement disables the cursor.

Oracle9i: Program with PL/SQL 6-8

Declaring the Cursor

Syntax:

CURSOR cursor_nane | S
sel ect _st at enent;

* Do notinclude the | NTOclause in the cursor
declaration.

* If processing rows in a specific sequence is
required, use the ORDER BY clause in the query.

6-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Declaring the Cursor

Use the CURSOR statement to declare an explicit cursor. You can reference variables within the query,
but you must declare them before the CURSOR statement.

In the syntax:
cursor_name isaPL/SQL identifier.
select_statement isa SELECT statement without an | NTOclause.
Note
» Do not includethel NTOclausein the cursor declaration because it appears later in the FETCH
statement.

» Thecursor can beany valid ANSI SELECT statement, to include joins, and so on.

Oracle9i: Program with PL/SQL 6-9

Declaring the Cursor

Example:

DECLARE
CURSOR enp_cursor | S
SELECT enpl oyee_id, |ast_name
FROM enpl oyees;

CURSOR dept _cursor IS
SELECT *
FROM departnents
WHERE |ocation_id = 170;
BEG N

6-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Declaring the Cursor (continued)

In the example on the dlide, the cursor enp__cur sor isdeclared to retrieve the EMPLOYEE | Dand
LAST_NAME columns from the EMPLOYEES table. Similarly, the cursor DEPT _CURSOR s declared
to retrieve al the details for the department with the LOCATI ON_I D 170.

DECLARE
vV_enpno enpl oyees. enpl oyee_i d%I'YPE;
V_enamne enpl oyees. | ast _nanme% YPE;

CURSOR enp_cursor | S
SELECT enpl oyee_id, |ast_nane
FROM enpl oyees;
BEG N

Fetching the values retrieved by the cursor into the variables declared in the DECLARE section is
covered later in this lesson.

Oracle9i: Program with PL/SQL 6-10

Opening the Cursor

Syntax:

OPEN cursor _nane;

®* Open the cursor to execute the query and identify
the active set.

* If the query returns no rows, no exception is

raised.
® Use cursor attributes to test the outcome after a
fetch.
6-11 Copyright © Oracle Corporation, 2001. All rights reserved.
OPEN Statement

The OPEN statement executes the query associated with the cursor, identifies the result set, and
positions the cursor before the first row.

In the syntax:
cursor_name isthe name of the previously declared cursor.
OPEN is an executabl e statement that performs the following operations:

1. Dynamically allocates memory for a context area that eventually contains crucial processing
information.

2. Parses the SELECT statement.

3. Binds the input variables—sets the value for the input variables by obtaining their memory
addresses.

4. ldentifies the active set—the set of rows that satisfy the search criteria. Rows in the active set are
not retrieved into variables when the OPEN statement is executed. Rather, the FETCH statement
retrieves the rows.

5. Paositions the pointer just before the first row in the active set.

For cursors declared using the FOR UPDATE clause, the OPEN statement also locks those rows. The
FOR UPDATE clauseis discussed in a later lesson.

Note: If the query returns no rows when the cursor is opened, PL/SQL does not raise an exception.
However, you can test the status of the cursor after a fetch using the SQLYRONCOUNT cursor attribute.

Oracle9i: Program with PL/SQL 6-11

Fetching Data from the Cursor

Syntax:

FETCH cursor_nanme INTO [variablel, variable2, ...]
| record_nane];

* Retrieve the current row values into variables.
* |nclude the same number of variables.

®* Match each variable to correspond to the columns
positionally.

* Test to see whether the cursor contains rows.

6-12 Copyright © Oracle Corporation, 2001. All rights reserved.

FETCH Statement

The FETCH statement retrieves the rows in the active set one at atime. After each fetch, the cursor
advances to the next row in the active set.

In the syntax:
cursor_name is the name of the previously declared cursor.
variable is an output variable to store the results.
record_name is the name of therecord in which theretrieved datais stored. (The
record variable can be declared using the R0OM YPE attribute.)
Guiddines:

* Include the same number of variablesin the | NTOclause of the FETCH statement as columnsin
the SELECT statement, and be sure that the data types are compatible.

» Match each variable to correspond to the columns positionally.

» Alternatively, define arecord for the cursor and reference the record inthe FETCH | NTO
clause.

e Test to see whether the cursor contains rows. If afetch acquires no values, there are no rows | eft
to process in the active set and no error is recorded.

Note: The FETCH statement performs the following operations:
1. Readsthe datafor the current row into the output PL/SQL variables.
2. Advances the pointer to the next row in the identified set.

Oracle9i: Program with PL/SQL 6-12

Fetching Data from the Cursor

Example:

LOOP
FETCH enp_cursor | NTO v_enpno, v_enane;
EXIT WHEN . . .;

-- Process the retrieved data

END LOOP;

6-13 Copyright © Oracle Corporation, 2001. All rights reserved.

FETCH Statement (continued)

You usethe FETCH dtatement to retrieve the current row values into output variables. After the fetch,
you can manipulate the data in the variables. For each column value returned by the query associated
with the cursor, there must be a corresponding variable in the | NTOlist. Also, their data types must be
compatible.
Retrieve thefirst 10 employees one by one.
SET SERVEROUTPUT ON
DECLARE
v_enpno enpl oyees. enpl oyee_i d%YPE;
v_enane enpl oyees. | ast_nane%l YPE;
CURSOR enp_cursor IS
SELECT enpl oyee_id, |ast_nane
FROM enpl oyees;
BEG N
OPEN enp_cursor;
FORi IN1..10 LOCP
FETCH enp_cursor |INTO v_enpno, v_enane;

DBVS_QUTPUT. PUT_LINE (TO CHAR(v_enpno)
[1" '|] v_enane);

END LOCP;
END ;

Oracle9i: Program with PL/SQL 6-13

Closing the Cursor

Syntax:

CLCSE cur sor _nane;

* Closethe cursor after completing the processing
of the rows.

* Reopen the cursor, if required.

* Do not attempt to fetch data from a cursor after it
has been closed.

6-14 Copyright © Oracle Corporation, 2001. All rights reserved.

CLCSE Statement

The CLOSE statement disables the cursor, and the active set becomes undefined. Close the cursor after
completing the processing of the SELECT statement. This step allows the cursor to be reopened, if
required. Therefore, you can establish an active set several times.

In the syntax:
cursor_name is the name of the previously declared cursor.

Do not attempt to fetch data from a cursor after it has been closed, or thel NVALI D CURSOR
exception will be raised.

Note: The CLOSE statement rel eases the context area.

Although it is possible to terminate the PL/SQL block without closing cursors, you should makeit a
habit to close any cursor that you declare explicitly to free up resources.

Thereis a maximum limit to the number of open cursors per user, which is determined by the
OPEN_CURSORS parameter in the database parameter file. OPEN_CURSORS = 50 by default.

OPEN enp_cursor
FORi IN 1..10 LOOP
FETCH enp_cursor I NTO v_enpno, v_enane;

END LOOP;
CLOSE enp_cursor;
END;

Oracle9i: Program with PL/SQL 6-14

Explicit Cursor Attributes

Obtain status information about a cursor.

Attribute Type Description
%4 SOPEN Boolean | Evaluates to TRUE if the cursor
IS open

oNOTFOUND Boolean Evaluates to TRUE if the most
recent fetch does not return a row

94-OUND Boolean | Evaluates to TRUE if the most

recent fetch returns arow;
complement of ¥NOTFOUND

oRONCOUNT Number Evaluates to the total number of
rows returned so far

6-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Explicit Cursor Attributes

As with implicit cursors, there are four attributes for obtaining status information about a cursor. When
appended to the cursor variable name, these attributes return useful information about the execution of
a data manipulation statement.

Note: You cannot reference cursor attributes directly in a SQL statement.

Oracle9i: Program with PL/SQL 6-15

The 9% SOPEN Attribute

* Fetch rows only when the cursor is open.

* Usethe %9 SOPEN cursor attribute before

performing a fetch to test whether the cursor is
open.

Example:

| F NOT' enp_cursor % SOPEN THEN
OPEN enp_cursor,
END | F;
LOOP
FETCH enp_cursor. ..

6-16 Copyright © Oracle Corporation, 2001. All rights reserved.

The 9% SOPEN Attribute

» You can fetch rows only when the cursor is open. Usethe %4 SOPEN cursor attribute to
determine whether the cursor is open.

» Fetchrowsinaloop. Use cursor attributes to determine when to exit the loop.
» Usethe ¥RONCOUNT cursor attribute for the following:

— Toretrieve an exact number of rows

— Fechtherowsin anumeric FOR loop

— Fechtherowsin asimpleloop and determine when to exit the loop.
Note: %4 SOPEN returns the status of the cursor: TRUE if open and FALSE if not.

Oracle9i: Program with PL/SQL 6-16

Controlling Multiple Fetches

®* Process several rows from an explicit cursor using
a loop.

* Fetch arow with each iteration.

* Use explicit cursor attributes to test the success
of each fetch.

6-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling Multiple Fetches from Explicit Cursors

To process several rows from an explicit cursor, you typically define aloop to perform a fetch on each
iteration. Eventually all rows in the active set are processed, and an unsuccessful fetch sets the
YNOTFQUND attribute to TRUE. Use the explicit cursor attributes to test the success of each fetch

before any further references are made to the cursor. If you omit an exit criterion, an infinite loop
results.

For more information, see PL/SQL User’s Guide and Reference, “ Interaction With Oracle.”

Oracle9i: Program with PL/SQL 6-17

The YNOTFOUND
and YRONCOUNT Attributes

* Use the YRONCOUNT cursor attribute to retrieve an
exact number of rows.

* Use the Y9NOTFOUND cursor attribute to determine
when to exit the loop.

6-18 Copyright © Oracle Corporation, 2001. All rights reserved.

The YNOTFOUND and “ROWCOUNT Attributes
oINCOTFOUND

YNOTFQUND is thelogical opposite of %4-OUND. ¥8NOTFOUND yields FALSE if the last fetch returned a
row, or TRUE if the last fetch failed to return arow. In the following example, you use ¥NOT FOUND to
exit aloop when FETCH fails to return arow:

LOOP
FETCH c1 I NTO ny_enane, ny_sal, ny_hiredate;
EXIT WHEN c1%NOTFOUND;

END LOOP;

Beforethefirst fetch, 0NOTFOUND evaluates to NULL. So, if FETCH never executes successfully, the
loop is never exited. That is becausethe EXI T WHEN statement executes only if its WHEN condition is
true. To be safe, usethefollowing EXI T statement instead:

EXIT WHEN c19%NOTFOUND OR c1%NOTFOUND |'S NULL;
If acursor is not open, referencing it with ¥NOTFOUND raises | NVALI D_CURSOR.

Oracle9i: Program with PL/SQL 6-18

The Y¥NOTFOUND and YROWCOUNT Attributes (continued)
Y8RONCOUNT

When its cursor or cursor variable is opened, %RONCOUNT is zeroed. Before thefirst fetch,
YRONCQOUNT yidds 0. Thereafter, it yields the number of rows fetched so far. The number is
incremented if the last fetch returned arow. In the next example, you use ¥RONCOUNT to take action
if more than ten rows have been fetched:

LOOP
FETCH c1 | NTO ny_enane, ny_deptno;
| F c19%ROANCOUNT > 10 THEN

END I F;

END LOOP;
If acursor is hot open, referencing it with ¥8R0ONCOUNT raises | NVALI D_CURSCR.

Oracle9i: Program with PL/SQL 6-19

Example

DECLARE

v_enmpno enpl oyees. enpl oyee_i d%'YPE;

v_enamnme enpl oyees. | ast _nane%l YPE;

CURSOR enp_cursor | S
SELECT enpl oyee_id, |ast_name
FROM enpl oyees;

BEG N

OPEN enp_cursor,

LOOP
FETCH enp_cursor | NTO v_enpno, v_enane;
EXI'T WHEN enp_cur sor “RONCOUNT > 10 OR

enp_cur sor YNOTFOUND,;

DBVMS_OUTPUT. PUT_LI NE (TO_CHAR(v_enpno)

[l "||] v_enane);
END LOOP;
CLOSE enp_cursor;
END ;
6-20 Copyright © Oracle Corporation, 2001. All rights reserved.
Example

The example on the slide retrieves the first ten employees one by one.
Note: Beforethefirst fetch, YINOTFOUND evaluatesto NULL. So if FETCH never executes

successfully, theloop is never exited. That is becausethe EXI T WHEN statement executes only if its

WHEN condition is true. To be safe, usethefollowing EXI T statement:
EXIT WHEN enp_cur sor “NOTFOUND OR enp_cur sor ¥NOTFOUND | S NULL;

If using “ROWCCOUNT, add atest for no rows in the cursor by using the %ANOTFOUND attribute, because

the row count is not incremented if the fetch does not retrieve any rows.

Oracle9i: Program with PL/SQL 6-20

Cursors and Records

Process the rows of the active set by fetching values
into a PL/SQL RECORD.

DECLARE
CURSOR enp_cursor | S
SELECT enpl oyee_id, |ast_nane
FROM enpl oyees;
enp_record enp_cursor YROMYPE;
BEG N
OPEN enp_cursor;,
LOOP

FETCH enp_cursor | NTO enp_record,;

enp_record

enpl oyee id | ast _nane
100 Ki ng
6-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Cursors and Records

Y ou have already seen that you can define records that have the structure of columnsin atable. You
can also define arecord based on the selected list of columnsin an explicit cursor. Thisis convenient
for processing the rows of the active set, because you can simply fetch into the record. Therefore, the
values of the row areloaded directly into the corresponding fields of the record.

Example
Use a cursor to retrieve employee numbers and names and popul ate a database table, TEMP_LI ST,
with this information.
DECLARE
CURSOR enp_cursor IS
SELECT enpl oyee_id, |ast_nane
FROM enpl oyees;
enp_record enp_cur sor ¥ROMYPE;
BEG N
OPEN enp_cursor;
LOOP
FETCH enp_cursor | NTO enp_record;
EXIT WHEN enp_cur sor Y“NOTFOUND,
I NSERT | NTO tenp_list (enpid, enpnane)
VALUES (enp_record. enpl oyee_id, enp_record.|ast_nane);
END LOCP;
COW T;
CLOSE enp_cursor;
END;
/ Oracle9i: Program with PL/SQL 6-21

Cursor FOR Loops

Syntax:

FOR record_name | N cursor_nanme LOOP
st at enent 1;
st at enent 2;

END LOOP;

®* The cursor FORIoop is a shortcut to process
explicit cursors.

* Implicit open, fetch, exit, and close occur.
* Therecord is implicitly declared.

6-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Cursor FORLoops

A cursor FOR loop processes rows in an explicit cursor. It is a shortcut because the cursor is opened,
rows are fetched once for each iteration in the loop, the loop exits when the last row is processed, and

the cursor is closed automatically. The loop itsef is terminated automatically at the end of the iteration
where the last row is fetched.

In the syntax:
record_name is the name of the implicitly declared record.
cursor_name isaPL/SQL identifier for the previously declared cursor.
Guidelines

» Do not declare the record that controls the loop because it is declared implicitly.
e Test the cursor attributes during the loop, if required.

» Supply the parameters for a cursor, if required, in parentheses following the cursor namein the
FOR statement. More information on cursor parametersis covered in a subsequent |esson.

» Do not use a cursor FOR loop when the cursor operations must be handled explicitly.

Note: You can define a query at the start of the loop itsdlf. The query expression is called a SELECT
substatement, and the cursor is internal to the FOR loop. Because the cursor is not declared with a
name, you cannot test its attributes.

Oracle9i: Program with PL/SQL 6-22

Cursor FOR Loops

Print a list of the employees who work for the sales
department.

DECLARE
CURSOR enp_cursor | S
SELECT | ast_nane, departnent _id
FROM enpl oyees;
BEG N
FOR enp_record I N enmp_cursor LOCOP
-- inmplicit open and inplicit fetch occur
| F enp_record. departnment _id = 80 THEN

END LOOP; -- inplicit close occurs
END;
/

6-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Example

Retrieve employees one by one and print out alist of those employees currently working in the sales
department (DEPARTMVENT _| D = 80). The example from the dide is completed below.
SET SERVEROUTPUT ON
DECLARE
CURSOR enp_cursor IS
SELECT | ast_nane, departnent _id
FROM enpl oyees;
BEG N
FOR enp_record I N enp_cursor LOOP
--inmplicit open and inplicit fetch occur
| F enp_record. departnent _id = 80 THEN
DBMS_QUTPUT. PUT_LI NE (' Enpl oyee ' || enp_record.|ast_nane
|| ' works in the Sales Dept. ');
END | F;
END LOOP; --inmplicit close and inplicit |oop exit
END ;
/

Oracle9i: Program with PL/SQL 6-23

Cursor FOR Loops Using Subqueries

No need to declare the cursor.
Example:

BEG N
FOR enp_record I N (SELECT | ast_nane, departnent id
FROM enpl oyees) LOCP
-- inmplicit open and inplicit fetch occur
| F enp_record. departnment _id = 80 THEN

END LOOP; -- inplicit close occurs
END;

6-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Cursor FORLoops Using Subqueries

When you use a subquery in a FOR loop, you do not need to declare a cursor. This example does the
same thing as the one on the previous page. The complete codeis given below:
SET SERVEROUTPUT ON
BEG N
FOR enp_record I N (SELECT | ast_name, departnent _id
FROM enpl oyees) LOOP
--inplicit open and inplicit fetch occur
I F enp_record. departnent _id = 80 THEN
DBVS_OUTPUT. PUT_LINE (' Enpl oyee ' || enp_record.|ast_nane
|| " works in the Sales Dept. ');
END | F;
END LOOP; --inplicit close occurs
END ;
/

Oracle9i: Program with PL/SQL 6-24

Example
Retrieve thefirst five employees with a job history.
SET SERVEROUTPUT ON

DECLARE
v_enployee_id enployees. enpl oyee i dWYPE;
v _job id enpl oyees. j ob_i dWYPE;
v_start _date DATE;
v_end_date DATE;
CURSOR enp_cursor IS
SELECT enpl oyee_id, job_id, start_date, end date

FROM j ob_history
ORDER BY enpl oyee i d;
BEGA N
OPEN enp_cursor;
LOOP
FETCH enp_cursor
I NTO v_enployee _id, v_job id, v_start_date, v_end date;

DBVMS OUTPUT. PUT_LINE (' Enpl oyee #: ' || v_enployee_ id ||
" held the job of ' || v_job_id || ' FROM' ||
v_start _date || ' TO' || v_end date);

EXIT WHEN enp_cur sor Y“RONCOUNT > 4 OR
enp_cur sor ¥NOTFOUND,;
END LCOP;
CLOSE enp_cursor;
END,
/

Oracle9i: Program with PL/SQL 6-25

Summary

In this lesson you should have learned to:

* Distinguish cursor types:

— Implicit cursors: used for all DML statements and
single-row queries

— Explicit cursors: used for queries of zero, one, or
more rows

* Manipulate explicit cursors

* Evaluate the cursor status by using cursor
attributes

®* Use cursor FORloops

6-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

Oracle uses work areas to execute SQL statements and store processing information. A PL/SQL
construct called a cursor allows you to name awork area and access its stored information. There are
two kinds of cursors: implicit and explicit. PL/SQL implicitly declares a cursor for all SQL data
manipulation statements, including queries that return only one row. For queries that return more than
one row, you can explicitly declare a cursor to process the rows individually.

Every explicit cursor and cursor variable has four attributes: %4-OUND, % SOPEN %NOTFOUND, and
YRONCOUNT. When appended to the cursor or cursor variable, these attributes return useful

information about the execution of a data manipulation statement. Y ou can use cursor attributesin
procedural statements but not in SQL statements.

Oracle9i: Program with PL/SQL 6-26

Practice 6 Overview

This practice covers the following topics:

* Declaring and using explicit cursors to query rows
of atable

®* Using acursor FORloop
* Applying cursor attributes to test the cursor status

6-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 6 Overview

This practice applies your knowledge of cursorsto process a number of rows from atable and populate
another table with the results using a cursor FOR loop.

Oracle9i: Program with PL/SQL 6-27

Practice 6
1. Runthe command inthescript | ab06_1. sqgl to create a new tablefor storing the salaries of
the employees.
CREATE TABLE t op_dogs
(salary NUMBER(8, 2)) ;
2. Create a PL/SQL block that determines the top employees with respect to salaries.

a. Accept a number n from the user where n represents the number of top n earners from the
EMPLOYEES table. For example, to view thetop five earners, enter 5.

Note: Use the DEFI NE command to provide the value for n. Pass the value to the
PL/SQL block through a iSQL*Plus substitution variable.

b. Inaloop usetheiSQL*Plus substitution parameter created in step 1 and gather the
salaries of thetop n people from the EMPLOYEES table. There should be no duplication
in the salaries. If two employees earn the same salary, the salary should be picked up
only once.

c. Storethesalariesinthe TOP_DOGS table.

d. Testavariety of special cases, such asn =0 or wheren is greater than the number
of employees in the EMPLOYEES table. Empty the TOP_ DOGS table after each test. The
output shown represents the five highest salaries in the EMPLOYEES table.

SALARY

|

| 24000
| 17000
| 14000
|
|

13500
13000

3. Create a PL/SQL block that does the following:

a. Usethe DEFI NE command to provide the department ID. Pass the value to the PL/SQL
block through a iSQL*Plus substitution variable.

b. InaPL/SQL block, retrieve thelast name, salary, and MANAGER | D of the employees
working in that department.

c. If the salary of the employeeis less than 5000 and if the manager 1D is either 101 or 124,
display the message <<| ast _nanme>> Due f or arai se. Otherwise, display the
message<<| ast _nane>> Not duefor arai se.

Note: SET ECHO OFF to avoid displaying the PL/SQL code every time you execute the script.

Oracle9i: Program with PL/SQL 6-28

Practice 6 (continued)

d. Test the PL/SQL block for the following cases:

Department 1D

Message

10

Whal en Due for a raise

2

Hartstein Not Due for a rai se
Fay Not Due for a raise

50

Wi ss Not Due for a raise
Fripp Due for a raise
Kaufling Due for a raise
Vol | man Due for a raise
Mourgas Due for a raise

Russel Not Due for a raise

Partners Not Due for a raise
Errazuriz Not Due for a raise
Canbrault Not Due for a raise

Oracle9i: Program with PL/SQL 6-29

Oracle9i: Program with PL/SQL 6-30

Advanced Explicit Cursor Concepts

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

* Write a cursor that uses parameters

* Determine when a FOR UPDATE clause in a cursor
Is required

* Determine when to use the WHERE CURRENT OF
clause

* Write a cursor that uses a subquery

7-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In this lesson, you learn more about writing explicit cursors, specifically about writing cursors that use
parameters.

Oracle9i: Program with PL/SQL 7-2

Cursors with Parameters

Syntax:

CURSCOR cur sor _nane
[(par anet er _nanme datatype, ...)]
| S

sel ect _st at enent;

* Pass parameter values to a cursor when the cursor
is opened and the query is executed.

®* Open an explicit cursor several times with a
different active set each time.

OPEN cursor _nane(paraneter_val ue,)

7-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Cursors with Parameters

Y ou can pass parameters to the cursor in acursor FOR loop. This means that you can open and close
an explicit cursor several timesin a block, returning a different active set on each occasion. For each
execution, the previous cursor is closed and re-opened with a new set of parameters.

Each formal parameter in the cursor declaration must have a corresponding actual parameter in the
OPEN statement. Parameter data types are the same as those for scalar variables, but you do not give
them sizes. The parameter names are for references in the query expression of the cursor.

In the syntax:

cursor_name isaPL/SQL identifier for the previously declared cursor.
parameter_name is the name of a parameter.

par anet er _name
datatype is ascalar data type of the parameter.
select_statement isa SELECT statement without the | NTO clause.

When the cursor is opened, you pass values to each of the parameters by position or by name. You can
pass values from PL/SQL or host variables aswell as from literals.

Note: The parameter notation does not offer greater functionality; it simply allows you to specify input
values easily and clearly. Thisis particularly useful when the same cursor is referenced repeatedly.

Oracle9i: Program with PL/SQL 7-3

Cursors with Parameters

Pass the department number and job title to the WHERE
clause, in the cursor SELECT statement.

DECLARE

CURSOR enp_cur sor
(p_deptno NUMBER, p_j ob VARCHAR2) | S

SELECT enpl oyee_id, |ast_nane
FROM enpl oyees
WHERE departnent _id = p_deptno
AND job_id = p_job;
BEG N
OPEN enp_cursor (80, 'SA REP);

CLOSE enp_cur sor;
OPEN enp_cursor (60, "I T_PROG);

END,;

7-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Cursors with Parameter

Parameter data types are the same as those for scalar variables, but you do not givethem sizes. The
parameter names are for references in the cursor’s query. In the following example, a cursor is

declared and is defined with two parameters.
DECLARE
CURSCOR enp_cursor(p_deptno NUMBER, p_job VARCHAR2) | S
SELECT ...
Thefollowing statements open the cursor and returns different active sets:
OPEN enp_cursor (60, v_enp_job);
OPEN enp_cursor (90, '"AD VP');
Y ou can pass parameters to the cursor used in a cursor FOR loop:
DECLARE
CURSCR enp_cursor (p_deptno NUMBER, p_job VARCHAR2) IS
SELECT ...

BEG N
FOR enp_record IN enp_cursor(50, 'ST CLERK) LOOP ...

Oracle9i: Program with PL/SQL 7-4

The FOR UPDATE Clause

Syntax:

SELECT . ..
FROM .
FOR UPDATE [OF col um_ref erence] [NOMI T] ;

* Use explicit locking to deny access for the
duration of a transaction.

* Lock the rows before the update or delete.

7-5 Copyright © Oracle Corporation, 2001. All rights reserved.

The FOR UPDATE Clause

Y ou may want to lock rows before you update or delete rows. Add the FOR UPDATE clause in the
cursor query to lock the affected rows when the cursor is opened. Because the Oracle Server releases
locks at the end of the transaction, you should not commit across fetches from an explicit cursor if
FOR UPDATE is used.

In the syntax:
column_reference isacolumn in the table against which the query is performed. (A
list of columns may also be used.)
NOWAI T returns an Oracle error if the rows are locked by another session

The FOR UPDATE clauseisthelast clausein a sdect statement, even after the ORDER BY, if one
exists. When querying multiple tables, you can use the FOR UPDATE clause to confine row locking to
particular tables. Rows in atable are locked only if the FOR UPDATE clause refersto a column in that
table FOR UPDATE OF col _nane(s) locksrowsonly in tablesthat contain the

col _nanme(s).

TheSELECT ... FORUPDATE statement identifies the rows that will be updated or deleted, then
locks each row in the result set. Thisis useful when you want to base an update on the existing values
inarow. Inthat case, you must make sure the row is not changed by another user before the update.

The optional NOWAI T keyword tells Oracle not to wait if requested rows have been locked by another
user. Control isimmediately returned to your program so that it can do other work before trying again
to acquire thelock. If you omit the NOMAI T keyword , Oracle waits until the rows are available.

Oracle9i: Program with PL/SQL 7-5

The FOR UPDATE Clause

Retrieve the employees who work in department 80
and update their salary.

DECLARE
CURSOR enp_cursor | S
SELECT enpl oyee_id, |ast_name, departnent_name
FROM enpl oyees, depart nent s
WHERE enpl oyees. departnent _id =
depart nment s. departnent _id
AND enpl oyees. departnent _id = 80
FOR UPDATE OF sal ary NOWMAIT;

7-6 Copyright © Oracle Corporation, 2001. All rights reserved.

The FOR UPDATE Clause (continued)

Note: If the Oracle server cannot acquire the locks on the rows it needs in a SELECT FOR UPDATE, it
waits indefinitely. You can usethe NOMAI T clausein the SELECT FOR UPDATE statement and
test for the error code that returns because of failure to acquire the locks in aloop. You can retry
opening the cursor n times before terminating the PL/SQL block. If you have alarge table, you can
achieve better performance by using the LOCK TABLE statement to lock all rows in thetable.
However, when using LOCK TABLE, you cannot use the WHERE CURRENT OF clause and must use
the notation WHERE col umm = identifier.

It is not mandatory that the FOR UPDATE OF clause refer to a column, but it is recommended for
better readability and maintenance.

Note: The WHERE CURRENT OF clauseis explained later in this lesson.

The FOR UPDATE clause identifies the rows that will be updated or deleted, then locks each row in
the result set. Thisis useful when you want to base an update on the existing valuesin arow. In that
case, you must make sure therow is not changed by another user before the update.

Oracle9i: Program with PL/SQL 7-6

The WHERE CURRENT OF Clause

Syntax:

VWHERE CURRENT OF cursor ;

®* Use cursors to update or delete the current row.

* |nclude the FOR UPDATE clause in the cursor
qguery to lock the rows first.

* Usethe WHERE CURRENT OF clause to reference
the current row from an explicit cursor.

7-7 Copyright © Oracle Corporation, 2001. All rights reserved.

The WHERE CURRENT OF Clause

When referencing the current row from an explicit cursor, use the WHERE CURRENT OF clause. This
allows you to apply updates and deletes to the row currently being addressed, without the need to
explicitly reference the ROW D. You must include the FOR UPDATE clausein the cursor query so that
the rows are locked on OPEN.

In the syntax:

cursor is the name of a declared cursor. (The cursor must have been
declared with the FOR UPDATE clause)

Oracle9i: Program with PL/SQL 7-7

The WHERE CURRENT OF Clause

DECLARE
CURSCR sal _cursor 1S

FROM enpl oyees e, departnents d
WHERE d. departnent _id = e.departnent _id
and d. departnent _id = 60
FOR UPDATE OF sal ary NOMAIT;
BEG N
FOR enp_record I N sal _cursor
LOOP
| F enp_record. salary < 5000 THEN
UPDATE enpl oyees
SET salary = enp_record.salary * 1.10
WHERE CURRENT COF sal cursor;

SELECT e. departnent _id, enployee id, |ast_nanme, salary

END | F;
END LOOP;
END;
/
7-8 Copyright © Oracle Corporation, 2001. All rights reserved.

The WHERE CURRENT OF Clause (continued)
Example

The dlide exampl e loops through each employeein department 60, and checks whether the salary is
less than 5000. If the salary is less than 5000, the salary israised by 10%. The WHERE CURRENT OF
clauseinthe UPDATE statement refersto the currently fetched record. Observe that atable can be
updated with the WHERE CURRENT OF clause, even if thereis ajoin in the cursor declaration.

Additionally, you can write a DELETE or UPDATE statement to contain the WHERE CURRENT OF
cursor_name clause to refer to the latest row processed by the FETCH statement. Y ou can update rows
based on criteria from a cursor. When you use this clause, the cursor you reference must exist and
must contain the FOR UPDATE clausein the cursor query; otherwise, you will receive an error. This
clause allows you to apply updates and deletes to the currently addressed row without the need to

explicitly referencethe ROW D pseudo column.

Oracle9i: Program with PL/SQL 7-8

Cursors with Subqueries

Example:

DECLARE
CURSOR ny_cursor IS
SELECT t1.departnent _id, tl.departnent_nane,
t2.staff
FROM departnents t1, (SELECT departnent id,
COUNT(*) AS STAFF

FROM enpl oyees
GROUP BY departnent _id) t2

WHERE t 1. departnent _id = t2.departnent _id

AND t2.staff >= 3;

7-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Cursors with Subqueries

A subguery is aquery (usually enclosed by parentheses) that appears within another SQL data
manipulation statement. When evaluated, the subquery provides a value or set of values to the outer
guery. Subqueries are often used in the WHERE clause of a sdect statement. They can also be used in
the FROMclause, creating a temporary data source for that query.

In this example, the subquery creates a data source consisting of department numbers and employee
head count in each department (known asthe alias STAFF. A tablealias, t 2, refersto this temporary
data source in the FROMclause. When this cursor is opened, the active set will contain the department
number, department name, and total number of employees working for the department, provided there
are three or more employees working for the department.

Oracle9i: Program with PL/SQL 7-9

Summary

In this lesson, you should have learned to:
* Return different active sets using cursors with

parameters.

* Define cursors with subqueries and correlated
subqueries.

* Manipulate explicit cursors with commands using
the:

— FORUPDATE clause
— VWHERE CURRENT OF clause

7-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

An explicit cursor can take parameters. In a query, you can specify a cursor parameter wherever a
constant appears. An advantage of using parameters is that you can decide the active set at run time.

PL/SQL provides a method to modify the rows that have been retrieved by the cursor. The method
consists of two parts. The FOR UPDATE clause in the cursor declaration and the WHERE CURRENT
OF clausein an UPDATE or DELETE statement.

Oracle9i: Program with PL/SQL 7-10

Practice 7 Overview

This practice covers the following topics:

* Declaring and using explicit cursors with
parameters

* Using a FORUPDATE cursor

7-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 7 Overview

This practice applies your knowledge of cursors with parameters to process a number of rows from
multiple tables.

Oracle9i: Program with PL/SQL 7-11

Practice 7

1

In aloop, use a cursor to retrieve the department number and the department name from the
DEPARTMENTS table for those departments whose DEPARTIVENT _| Dis less than 100. Pass the
department number to another cursor to retrieve from the EMPLOYEES table the details of
employee last name, job, hire date, and salary of those employees whose EMPLOYEE | Disless
than 120 and who work in that department.

Department Mumber : 10 Department Marme © A dmimstration

Department Mumber : 20 Department Marme : Marketing

Department Mumber : 30 Department Narme : Purchasing

Faphaely PTU_NAN 07-DEC-34 11000
Ehoo PU_CLERE 15-MAY-35 3100
Baida PU_CLERE 24-DEC-57 2500
Tobias PUU_CLEEE 24-JUL-%7 2500
Himure PU_CLEERE 15-IMOW-%8 2600
Colmenares PUT_CLERK 10-ATG-95 2500

Departtnent Mumber ; 40 Department Matne | Hutnan Eesources

Departtnent Mumber : 50 Department MName : Shipping

Departtnent Mumber ; 60 Department MNatne : TT

Huneold IT_PROG 03-TAT-50 $000
Ernst IT PROG 21-MAT-91 6000
Austin TT_FROG 25-TUN-37 5250
Pataballa IT PEOG 05-FEE-95 5280
Lorentz [T PROG 07-FEE-29 4620

Department Mumber - 70 Department IMame : Public Eelations

Department Mumber - B0 Department IName © Sales

Departtnent Mumber : 90 Department MName ; Executive

Eimg AD _FPEES 17-JUN-87 24000
Eochhar AD VP 21-5EP-89 17000
De Haan AD_WVP 13-JTAN-53 17000

PLAZQL procedure successfully completed.
Oracle9i: Program with PL/SQL 7-12

Practice 7 (continued)

2. Modify thecodeinsol 04_4. sql toincorporate a cursor using the FOR UPDATE and
WHERE CURRENT CF functionality in cursor processing.

a. Define the host variables.
DEFI NE p_enpno=104
DEFI NE p_enpno=174
DEFI NE p_enpno=176

b. Execute the modified PL/SQL block
c. Execute the following command to check if your PL/SQL block has worked successfully:

SELECT enpl oyee_id, sal ary, stars
FROM EMP

WHERE enpl oyee id IN (176,174, 104);

| EMPLOYEE_ID | SALARY | STARS
| 104 | BOO0 [+

| 174 | 11000 [

| 176 | HEOD e

Oracle9i: Program with PL/SQL 7-13

Oracle9i: Program with PL/SQL 7-14

Handling Exceptions

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

* Define PL/SQL exceptions
* Recognize unhandled exceptions

* List and use different types of PL/SQL exception
handlers

* Trap unanticipated errors

* Describe the effect of exception propagation in
nested blocks

®* (Customize PL/SQL exception messages

8-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In this lesson, you learn what PL/SQL exceptions are and how to deal with them using predefined,
nonpredefined, and user-defined exception handlers.

Oracle9i: Program with PL/SQL 8-2

Handling Exceptions with PL/SQL

* An exception is an identifier in PL/SQL that is raised
during execution.

* How is it raised?
— An Oracle error occurs.
— You raise it explicitly.
* How do you handle it?
— Trap it with a handler.
— Propagate it to the calling environment.

8-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Overview

An exception is anidentifier in PL/SQL that is raised during the execution of a block that terminates
its main body of actions. A block always terminates when PL/SQL raises an exception, but can you
specify an exception handler to perform final actions.

Two Methods for Raising an Exception

» AnOracle error occurs and the associated exception is raised automatically. For example, if the
error ORA- 01403 occurs when no rows are retrieved from the database in a SELECT
statement, then PL/SQL raises the exception NO_DATA FOUND.

» You raise an exception explicitly by issuing the RAI SE statement within the block. The
exception being raised may be either user-defined or predefined.

Oracle9i: Program with PL/SQL 8-3

Handling Exceptions

Trap the exception Propagate the exception
Exception Exception
is raised is raised
Exception Exception

is trapped is not
trapped
Exception

propagates to calling
environment

8-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Trapping an Exception

If the exception is raised in the executable section of the block, processing branches to the
corresponding exception handler in the exception section of the block. If PL/SQL successfully handles
the exception, then the exception does not propagate to the enclosing block or environment. The
PL/SQL block terminates successfully.

Propagating an Exception

If the exception is raised in the executable section of the block and there is no corresponding exception
handler, the PL/SQL block terminates with failure and the exception is propagated to the calling
environment.

Oracle9i: Program with PL/SQL 8-4

Exception Types

* Predefined Oracle Server Implicitly
* Nonpredefined Oracle Server raised

* User-defined Explicitly raised

8-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Exception Types
Y ou can program for exceptions to avoid disruption at run time. There are three types of exceptions.

Exception Description Directionsfor Handling
Predefined Oracle One of approximately 20 Do not declare and allow the
Server error errors that occur most often Oracle server to raise them
in PL/SQL code implicitly
Nonpredefined Any other standard Oracle Declare within the declarative
Oracle Server error Server error section and allow the Oracle
Server to raise them implicitly
User-defined error A condition that the Declare within the declarative
developer determinesis section, and raise explicitly
abnorma

Note: Some application tools with client-side PL/SQL, such as Oracle Developer Forms, have their
own exceptions.

Oracle9i: Program with PL/SQL 8-5

Trapping Exceptions

Syntax:

EXCEPTI ON
WHEN exceptionl [OR exception2 . . .] THEN
st atenent 1;
st at enent 2;

[WHEN exception3 [OR exception4 . . .] THEN
st at ement 1;
st at emrent 2;
. = oo
[WHEN OTHERS THEN
st atement 1;
st at emrent 2;

3

8-6 Copyright © Oracle Corporation, 2001. All rights reserved.

Trapping Exceptions

You can trap any error by including a corresponding routine within the exception handling section of
the PL/SQL block. Each handler consists of a WHEN clause, which specifies an exception, followed by
a sequence of statements to be executed when that exception is raised.

In the syntax:
exception is the standard name of a predefined exception or the name of a user-
defined exception declared within the declarative section.
statement isone or more PL/SQL or SQL statements.
OTHERS is an optional exception-handling clause that traps unspecified
exceptions.

WHEN OTHERS Exception Handler

The exception-handling section traps only those exceptions that are specified; any other exceptions are
not trapped unless you use the OTHERS exception handler. This traps any exception not yet handled.
For thisreason, OTHERS is the last exception handler that is defined.

The OTHERS handler traps all exceptions not already trapped. Some Oracle tools have their own
predefined exceptions that you can raise to cause events in the application. The OTHERS handler also
traps these exceptions.

Oracle9i: Program with PL/SQL 8-6

8-7

Trapping Exceptions Guidelines

* The EXCEPTI ONkeyword starts exception-handling
section.

* Several exception handlers are allowed.

®* Only one handler is processed before leaving the
block.

* \WHEN OTHERS s the last clause.

Copyright © Oracle Corporation, 2001. All rights reserved.

Guidelines

Begin the exception-handling section of the block with the EXCEPTI ON keyword.
Define several exception handlers, each with its own set of actions, for the block.

When an exception occurs, PL/SQL processes only one handler before leaving the block.
Place the OTHERS clause after all other exception-handling clauses.

Y ou can have only one OTHERS clause.

Exceptions cannot appear in assignment statements or SQL statements.

Oracle9i: Program with PL/SQL 8-7

Trapping Predefined Oracle Server Errors

* Reference the standard name in the exception-
handling routine.

e Sample predefined exceptions:
— NO _DATA FOUND
— TOO MANY_ ROWS
— | NVALI D_CURSOR
— ZERO DI VI DE
— DUP_VAL_ON_| NDEX

8-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Trapping Predefined Oracle Server Errors

Trap a predefined Oracle Server error by referencing its standard name within the corresponding
exception-handling routine.

For a completelist of predefined exceptions, see PL/SQL User’s Guide and Reference, “Error
Handling.”

Note: PL/SQL declares predefined exceptions in the STANDARD package.

It isa good idea to always handle the NO_DATA FOUND and TOO_MANY_ROWS exceptions, which
are the most common.

Oracle9i: Program with PL/SQL 8-8

Predefined Exceptions

Exception Name Oracle Description
Server
Error
Number
ACCESS_I NTO_NULL ORA- Attempted to assign values to the attributes
06530 of an uninitialized object
CASE_NOT_FOUND ORA- None of the choices in the WHEN clauses of
06592 a CASE statement is selected, and thereis
no ELSE clause.
COLLECTI ON_I'S_NULL 0022\31 Attempted to apply collection methods

other than EXI STS to an uninitialized
nested table or varray

CURSOR_ALREADY _OPEN ORA-

Attempted to open an aready open cursor

06511
DUP_VAL_ON_| NDEX 008’8\0 . Attempted to insert a duplicate value
I'NVALI' D_CURSOR ogféo . [llegal cursor operation occurred
I NVALI D_NUMBER ORA- Conversion of character string to number
01722 fals
LOG N_DENI ED ORA- Logging on to Oracle with an invalid
01017 username or password
NO_DATA_FOUND 002’2\03 Single row SELECT returned no data
NOT_LOGGED_ON ORA- PL/SQL program issues a database call
01012 without being connected to Oracle
PROGRAM_ERRCR 00ng PL/SQL has an internal problem
501
ROWMYPE_M SVATCH 0022\04 Host cursor variable and PL/SQL cursor

variable involved in an assignment have
incompatibl e return types

Oracle9i: Program with PL/SQL 8-9

Predefined Exceptions (continued)

Oracle
Server
Error
Number

Exception Name

Description

STORAGE_ERRCR ORA-
06500

PL/SQL ran out of memory or memory is
corrupted.

SUBSCRI PT_BEYOND_COUNT ORA-
06533

Referenced a nested table or varray element
using an index number larger than the number
of elementsin the collection.

SUBSCRI PT_QUTSIDE_LIMT | ORA-

Referenced a nested table or varray element

06532 using an index number that is outside the legal
range (-1 for example)
SYS_I NVALI D_ROW D ORA- The conversion of acharacter string into a
01410 universal RON Dfails because the character
string does not represent avalid RON D.
TI MEOUT_ON_RESQURCE ORA- Time-out occurred while Oracle iswaiting for
00051 aresource.
TOO_MANY_RONE ORA- Single-row SELECT returned more than one
01422 row.
VALUE_ERROR ORA- Arithmetic, conversion, truncation, or size-
06502 constraint error occurred.
ZERO_DI VI DE ORA- Attempted to divide by zero
01476

Oracle9i: Program with PL/SQL 8-10

Predefined Exceptions

Syntax:
BEG N

EXCEPTI ON
VWHEN| NO_DATA FOUND |THEN
st atement 1;
st at emrent 2;

VWHEN [TOO_NMANY_ROWS | THEN
st at ement 1;
VWHEN OTHERS THEN
st at ement 1;
st at emrent 2;
st at emrent 3;
END;

8-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Trapping Predefined Oracle Server Exceptions

When an exception is raised, normal execution of your PL/SQL block or subprogram stops and control
transfers to its exception-handling part, which is formatted as shown on the slide.

To catch raised exceptions, you write exception handlers. Each handler consists of a WHEN clause,
which specifies an exception, followed by a sequence of statements to be executed when that
exception is raised. These statements compl ete execution of the block or subprogram; control does not
return to where the exception was raised. In other words, you cannot resume processing where you | eft
off.

The optional OTHERS exception handler, which, if present, is always the last handler in a block or
subprogram, acts as the handler for all exceptions that are not named specifically. Thus, ablock or
subprogram can have only one OTHERS handler. As the following example shows, use of the
OTHERS handler guarantees that no exception will go unhandled:

EXCEPTI ON
WHEN ... THEN
-- handl e the error
WHEN ... THEN

-- handl e the error
WHEN OTHERS THEN
-- handl e all other errors
END;

Oracle9i: Program with PL/SQL 8-11

Trapping Nonpredefined Oracle

Server Errors

Declare

Y

Associate

Declarative section

\ 4

Reference

Exception-handling
section

Name the
exception

8-12

Code the PRAGVA
EXCEPTION INIT

Handle the raised
exception

Copyright © Oracle Corporation, 2001. All rights reserved.

Trapping Nonpredefined Oracle Server Errors

Y ou trap a nonpredefined Oracle server error by declaring it first, or by using the OTHERS handler.
The declared exception is raised implicitly. In PL/SQL, the PRAGVA EXCEPTI ON_| NI T tdlIsthe
compiler to associate an exception name with an Oracle error number. That allows you to refer to any
internal exception by name and to write a specific handler for it.

Note: PRAGVA (also called pseudoinstructions) is the keyword that signifies that the statement isa
compiler directive, which is not processed when the PL/SQL block is executed. Rather, it directs the
PL/SQL compiler to interpret all occurrences of the exception name within the block as the associated

Oracle server error number.

Oracle9i: Program with PL/SQL 8-12

Nonpredefined Error

Trap for Oracle server error number —2292, an
integrity constraint violation.

DEFI NE p_deptno = 10
DECLARE

e_enps_renmai ni ng EXCEPTI ON; |
PRAGVA EXCEPTION_INIT
(e_enps_remai ni ng, -2292);

BEG N
DELETE FROM depart nents
WHERE departnent _id = &p_dept no;

OXC

COW T;
EXCEPTI ON
WHEN|e enps_remai ning | THEN @
DBVS_QOUTPUT. PUT_LINE (' Cannot renove dept ' ||
TO CHAR(&p_deptno) || . Enployees exist. ');
END;
8-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Trapping a Nonpredefined Oracle Server Exception
1. Declarethe namefor the exception within the declarative section.
Syntax
exception EXCEPTI ON;
where: exception is the name of the exception.

2. Associate the declared exception with the standard Oracle server error number using the
PRAGVA EXCEPTI ON_I NI T statement.

Syntax
PRAGVA EXCEPTI ON_I NI T(exception, error_nunber);
where: exception isthe previously declared exception.

error_number is a standard Oracle Server error number.
3. Reference the declared exception within the corresponding exception-handling routine.
Example

If there are employees in a department, print a message to the user that the department cannot be
removed.

Oracle9i: Program with PL/SQL 8-13

Functions for Trapping Exceptions

* SQLCCDE: Returns the numeric value for the
error code

* SQLERRM Returns the message associated
with the error number

8-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Error-Trapping Functions

When an exception occurs, you can identify the associated error code or error message by using two
functions. Based on the values of the code or message, you can decide which subsequent action to take
based on the error.

SQLCODE returns the number of the Oracle error for internal exceptions. Y ou can pass an error
number to SQLERRM which then returns the message associated with the error number.

Function Description

SQLCODE Returns the numeric value for the error code (Y ou can assign it to a NUMBER
variable.)

SQLERRM Returns character data containing the message associated with the error
number

Example SQLCCDE Values

SQLCODE Value | Description

0 No exception encountered

1 User-defined exception

+100 NO_DATA FOUND exception
negative number Another Oracle server error number

Oracle9i: Program with PL/SQL 8-14

Functions for Trapping Exceptions

Example:

DECLARE

v_error_code NUVBER;
v_error_nmessage VARCHAR2(255);
BEG N

EXCEPTI ON
WHEN OTHERS THEN
ROLLBACK;

v_error_code : :| SQ.CCDEl ; .
vV_error_nessage : :| SQERRML
| NSERT I NTO errors

VALUES(v_error_code, v_error_mnessage);
END;

A

8-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Error-Trapping Functions (continued)

When an exception is trapped in the WHEN OTHERS exception handler, you can use a set of generic
functions to identify those errors. The example on the dide illustrates the values of SQLCODE and
SQLERRM being assigned to variables and then those variables being used in a SQL statement.

Y ou cannot use SQLCODE or SQLERRM directly in a SQL statement. Instead, you must assign their
values to local variables, then use the variables in the SQL statement, as shown in the following
example:
DECLARE

err_num NUMBER,;

err_msg VARCHAR2(100);
BEG N

EXCEPTI ON

WHEN OTHERS THEN
err_num : = SQLCODE;
err_msg := SUBSTR(SQLERRM 1, 100);
| NSERT I NTO errors VALUES (err_num err_nmnsg);
END;

Oracle9i: Program with PL/SQL 8-15

Trapping User-Defined Exceptions

Declare > Raise > Reference
Declarative Executable Exception-handling
section section section
Name the Explicitly raise the Handle the raised
exception. exception by using the exception.
RAI SE statement.
8-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Trapping User-Defined Exceptions
PL/SQL allows you to define your own exceptions. User-defined PL/SQL exceptions must be:
» Declared in the declare section of a PL/SQL block
» Raisad explicitly with RAI SE statements

Oracle9i: Program with PL/SQL 8-16

User-Defined Exceptions

Example:
DEFI NE p_departnment _desc = "I nformati on Technol ogy '
DEFI NE P_departnment _nunmber = 300
DECLARE
[e_invalid_department EXCEPTI ON | @
BEG N
UPDATE department s
SET departnment _nane = '&p_depart nment _desc’
WHERE department _id = &p_depart ment _nunber;
| F SQLYNOTFOUND THEN
[RATSE e_invali d_depar tnent; | @
END [|'F;
COWM T,
EXCEPTI ON
VHEN[e_inval i d_department | THEN @
DBVG . B such departnment id.");
END;
8-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Trapping User-Defined Exceptions (continued)
Y ou trap a user-defined exception by declaring it and raising it explicitly.
1. Declarethe namefor the user-defined exception within the declarative section.
Syntax:
exception EXCEPTI ON;
where exception is the name of the exception
2. Usethe RAISE statement to raise the exception explicitly within the executable section.
Syntax:
RAI SE excepti on;
where: exception isthe previously declared exception
3. Reference the declared exception within the corresponding exception-handling routine.
Example

This block updates the description of a department. The user supplies the department number and the
new name. If the user enters a department number that does not exist, no rows will be updated in the
DEPARTMENTS table. Raise an exception and print a message for the user that an invalid department
number was entered.

Note: Usethe RAI SE statement by itsdf within an exception handler to raise the same exception back
to the calling environment.

Oracle9i: Program with PL/SQL 8-17

Calling Environments

ISQL*Plus Displays error number and message
to screen

Procedure Builder | Displays error number and message
to screen

Oracle Developer |Accesses error number and message

Forms in atrigger by means of the

ERROR_CODE and ERROR_TEXT
packaged functions

Precompiler Accesses exception number through

application the SQLCA data structure

An enclosing Traps exception in exception-

PL/SQL block handling routine of enclosing block
8-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Propagating Exceptions

Instead of trapping an exception within the PL/SQL block, propagate the exception to allow the calling
environment to handleit. Each calling environment has its own way of displaying and accessing
erors.

Oracle9i: Program with PL/SQL 8-18

Propagating Exceptions

Subblocks can handle
an exception or pass
the exception to the
enclosing block.

DECLARE
e_no_rows excepti on;
e integrity excepti on;

PRAGVA EXCEPTION INIT (e_integrity,
BEG N
FOR c_record I N enp_cursor LOOP

BEG N
SELECT ...
UPDATE . ..
| F SQLYNOTFOUND THEN
RAI SE e_ho_rows;
END | F;
END;

END LOCP;
EXCEPTI ON
VWHEN e_integrity THEN ...
VWHEN e _no_rows THEN ...
END;

-2292) ;

8-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Propagating an Exception in a Subblock

When a subblock handles an exception, it terminates normally, and control resumes in the enclosing

block immediately after the subblock END statement.
However, if PL/SQL raises an exception and the current block does not have a handler for that

exception, the exception propagates in successive enclosing blocks until it finds a handler. If none of

these bl ocks handle the exception, an unhandled exception in the host environment results.

When the exception propagates to an enclosing block, the remaining executable actions in that block

are bypassed.

One advantage of this behavior is that you can enclose statements that require their own exclusive
error handling in their own block, while leaving more general exception handling to the enclosing

block.

Observeinthe examplethat theexcepti ons,e_no_rows ande_i ntegrity, aredeclaredin
the outer block. Intheinner block, whenthee _no_r ows exception is raised, PL/SQL looks for the

exception in the sub block. Because the exception is not declared in the subblock, the exception
propagates to the outer block, where PL/SQL finds the declaration.

Oracle9i: Program with PL/SQL 8-19

The RAI SE_APPLI CATI ON_ERROR
Procedure

Syntax:

rai se_application_error (error_nunber,
nmessage[, {TRUE | FALSE}]);

®* You can use this procedure to issue user-defined
error messages from stored subprograms.

®* You can report errors to your application and
avoid returning unhandled exceptions.

8-20 Copyright © Oracle Corporation, 2001. All rights reserved.

The RAI SE_APPLI CATI ON_ERRCR Procedure

Usethe RAI SE_APPLI CATI ON_ERROR procedure to communicate a predefined exception
interactively by returning a nonstandard error code and error message. With

RAI SE_APPLI CATI ON_ERROCR, you can report errors to your application and avoid returning
unhandled exceptions.

In the syntax:
error_number is a user-specified number for the exception between —20000 and
—20999.
message is the user-specified message for the exception. It is a character
string up to 2,048 bytes long.
TRUE | FALSE is an optional Boolean parameter (If TRUE, the error is placed on the

stack of previous errors. If FALSE, the default, the error
replaces all previous errors.)

Oracle9i: Program with PL/SQL 8-20

The RAI SE_APPLI CATI ON_ERROR
Procedure

* Used in two different places:
— Executable section
— Exception section

® Returns error conditions to the user in a manner
consistent with other Oracle server errors

8-21 Copyright © Oracle Corporation, 2001. All rights reserved.

The RAI SE_APPLI CATI ON_ERRCR Procedure (continued)

RAI SE_APPLI CATI ON_ERROCR can be used in ether (or both) the executable section and the
exception section of a PL/SQL program. The returned error is consistent with how the Oracle server
produces a predefined, nonpredefined, or user-defined error. The error number and messageis
displayed to the user.

Oracle9i: Program with PL/SQL 8-21

RAI SE_APPLI CATI ON_ERRCR

Executable section:
BEG N

DELETE FROM enpl oyees
WHERE nmanager _id = v_nyr;
| F SQLYNOTFOUND THEN
RAI SE_APPLI| CATI ON_ERROR(- 20202,
"This is not a valid manager');
END | F;

Exception section:

EXCEPTI ON
VWHEN NO _DATA FOUND THEN
RAI SE_APPL| CATI ON_ERROR (-20201,
' Manager is not a valid enpl oyee.');

END;

8-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Example

The dlide shows that the RAI SE_APPLI CATI ON_ERROR procedure can be used in both the executable
and exception sections of a PL/SQL program.

Hereis another example of a RAI SE_APPLI CATI ON_ERROR procedure that can be used in both the
executable and exception sections of a PL/SQL program:

DECLARE

e_nanme EXCEPTI ON;

PRAGVA EXCEPTION INIT (e_name, -20999);
BEG N

DELETE FROM enpl oyees

WHERE | ast_nanme = 'Hi ggins';
| F SQLYNOTFOUND THEN

RAI SE_APPLI CATI ON_ERROR(-20999, ' This is not a valid last nane');
END | F;

EXCEPTI ON
VWHEN e _nanme THEN
-- handl e the error

END,
/

Oracle9i: Program with PL/SQL 8-22

Summary

In this lesson, you should have learned that:
* Exception types:
— Predefined Oracle server error
— Nonpredefined Oracle server error
— User-defined error
* Exception trapping
* Exception handling:
— Trap the exception within the PL/SQL block.
— Propagate the exception.

8-23 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

In PL/SQL, awarning or error condition is called an exception. Predefined exceptions are error
conditions that are defined by the Oracle server. Nonpredefined exceptions are any other standard
Oracle Server Error. User-defined exceptions are exceptions specific to your application. Examples of
predefined exceptions include division by zero (ZERO DI VI DE) and out of memory
(STORAGE_ERROR). Exceptions without defined names can be assigned names, using the PRAGVA
EXCEPTI ON_I NI T statement.

Y ou can define exceptions of your own in the declarative part of any PL/SQL block, subprogram, or
package. For example, you can define an exception named | NSUFFI Cl ENT_FUNDS to flag
overdrawn bank accounts. User-defined exceptions must be given names.

When an error occurs, an exception israised. That is, normal execution stops and control transfers to
the exception-handling part of your PL/SQL block or subprogram. Internal exceptions are raised
implicitly (automatically) by the run-time system. User-defined exceptions must be raised explicitly by
RAI SE statements, which can also raise predefined exceptions.

To handle raised exceptions, you write separate routines called exception handlers. After an exception
handler runs, the current block stops executing and the enclosing block resumes with the next
statement. If thereis no enclosing block, contral returns to the host environment.

Oracle9i: Program with PL/SQL 8-23

Practice 8 Overview

This practice covers the following topics:
* Handling named exceptions
* Creating and invoking user-defined exceptions

8-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 8 Overview
In this practice, you create exception handlers for specific situations.

Oracle9i: Program with PL/SQL 8-24

Practice 8

1. WriteaPL/SQL block to select the name of the employee with a given salary value.

a
b.

Use the DEFI NE command to provide the salary.

Pass the value to the PL/SQL block through a iSQL*Plus substitution variable. If the salary
entered returns more than one row, handle the exception with an appropriate exception handler
and insert into the MESSAGES table the message “More than one employee with a salary of
<salary>.”

If the salary entered does not return any rows, handle the exception with an appropriate
exception handler and insert into the MESSAGES table the message “ No employee with a
salary of <salary>."

If the salary entered returns only one row, insert into the MESSAGES table the employee’s
name and the salary amount.

Handle any other exception with an appropriate exception handler and insert into the
MESSACES table the message “ Some other error occurred.”

Test the block for a variety of test cases. Display the rows from the MESSAGES table to check
whether the PL/SQL block has executed successfully. Some sample output is shown below.

RESULTS

|M|:|re than one employee with a salary of G000

|N|:| employee with a salary of 5000

|M|:|re than one employee with a salary of 7000

|N|:| emplayee with a salary of 2000

2. Modify thecodein p3g3. sqgl toadd an exception handler.

a

Use the DEFI NE command to provide the department ID and department location. Passthe
values to the PL/SQL block through aiSQL*Plus subgtitution variables.

Write an exception handler for the error to pass a message to the user that the specified
department does not exist. Use a bind variable to pass the message to the user.

Execute the PL/SQL block by entering a department that does not exist.

G_MESSAGE

|Department 200 is an invalid departrment

Oracle9i: Program with PL/SQL 8-25

Practice 8 (continued)

3. WriteaPL/SQL block that prints the number of employees who earn plus or minus $100
of the salary value set for an i SQL*Plus substitution variable. Use the DEFI NE command to provide
the salary value. Pass the value to the PL/SQL block through aiSQL*Plus substitution variable.

a. If thereis no employee within that salary range, print a message to the user indicating
that is the case. Use an exception for this case.

b. If thereare one or more employees within that range, the message should indicate how many
employees arein that salary range.

c. Handleany other exception with an appropriate exception handler. The message should
indicate that some other error occurred.

DEFI NE p_sal = 7000
DEFI NE p_sal = 2500
DEFI NE p_sal = 6500

| G_MESSAGE
|There isfare 4 ermployee(s) with a salary between 6900 and 7100

| G_MESSAGE
|There isfare 12 employes(s) with a salary betwean 2400 and 2600

| G_MESSAGE
|There isfare 3 employee(s) with a salary between 5400 and BE00

Oracle9i: Program with PL/SQL 8-26

Creating Procedures

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

® Distinguish anonymous PL/SQL blocks from
named PL/SQL blocks (subprograms)

®* Describe subprograms
® List the benefits of using subprograms

* Listthe different environments from which
subprograms can be invoked

9-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

PL/SQL supports many different program constructs. In this lesson you learn the difference between
anonymous blocks and named PL/SQL blocks. Named PL/SQL blocks are also referred to as
subprograms or program units.

Oracle9i: Program with PL/SQL 9-2

Objectives

After completing this lesson, you should be able to
do the following:
®* Describe PL/SQL blocks and subprograms

®* Describe the uses of procedures

* Create procedures

* Differentiate between formal and actual parameters
* List the features of different parameter modes

* Create procedures with parameters

* Invoke a procedure

* Handle exceptions in procedures

* Remove aprocedure

9-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

In this lesson, you learn the difference between anonymous PL/SQL blocks and subprograms. Y ou
also learn to create, execute, and remove procedures.

Oracle9i: Program with PL/SQL 9-3

PL/SQL Program Constructs

<header> | S| AS
o- DECLARE
‘ O O O ‘
BEG N
‘ C O O ‘
EXCEPTI ON
Tools Constructs | [°°° | Database Server
u END: Constructs
Anonymous blocks '
— Anonymous blocks
Application procedures or Stored od
functions ored procedures or
Application packages functions
— _ Stored packages
App|IC?.tIOI’] triggers Database trigger s
Object types Object types
9-4 Copyright © Oracle Corporation, 2001. All rights reserved.

PL/SQL Program Constructs

The diagram above displays a variety of different PL/SQL program constructs using the basic PL/SQL
block. In general, ablock is either an anonymous block or a named block (subprogram or program
unit).

PL/SQL Block Structure

Every PL/SQL construct is composed of one or more blocks. These blocks can be entirdly separate or
nested within one another. Therefore, one block can represent a small part of another block, whichin
turn can be part of the whole unit of code.

Note: Inthe dlide, the word "or" prior to the keyword DECLARE is not part of the syntax. It isused in
the diagram to differentiate between starting of subprograms and anonymous blocks.

The PL/SQL blocks can be constructed on and use the Oracle server (stored PL/SQL program units).
They can also be constructed using the Oracle Developer tools such as Oracle Forms Developer,
Oracle Report Developer, and so on (application or client-side PL/SQL program units).

Object types are user-defined compaosite data types that encapsulates a data structure along with the
functions and procedures needed to manipulate the data. Y ou can create object types either on the
Oracle server or using the Oracle Devel oper tools.

In this course, you will learn writing and managing stored procedures and functions, database triggers,
and packages. Creating object types is not covered in this course.

Oracle9i: Program with PL/SQL 9-4

Overview of Subprograms

A subprogram:

* |s anamed PL/SQL block that can accept parameters
and be invoked from a calling environment

* |s of two types:
— A procedure that performs an action
— A function that computes a value
* |s based on standard PL/SQL block structure

* Provides modularity, reusability, extensibility,
and maintainability

®* Provides easy maintenance, improved data security
and integrity, improved performance, and improved
code clarity

9-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Overview of Subprogram

A subprogram is based on standard PL/SQL structure that contains a declarative section, an
executable section, and an optional exception-handling section.

A subprogram can be compiled and stored in the database. It provides modularity, extensibility,
reusability, and maintainability.

Modularization is the process of breaking up large blocks of code into smaller groups of code called
modules. After code is modularized, the modules can be reused by the same program or shared by
other programs. It is easier to maintain and debug code of smaller modules than a single large
program. Also, the modules can be easily extended for customization by incorporating more
functionality, if required, without affecting the remaining modules of the program.

Subprograms provide easy maintenance because the code is located in one place and hence any
modifications required to the subprogram can be performed in this single location. Subprograms
provide improved data integrity and security. The data objects are accessed through the subprogram
and a user can invoke the subprogram only if appropriate access privilege is granted to the user.

Oracle9i: Program with PL/SQL 9-5

9-6

Block Structure for Anonymous
PL/SQL Blocks

DECLARE (optional)

Declare PL/SQL objects to be used
within this block

BEG N (mandatory)
Define the executable statements

EXCEPTI ON (optional)

Define the actions that take place if
an error or exception arises

END; (mandatory)

Copyright © Oracle Corporation, 2001. All rights reserved.

Anonymous Blocks

Anonymous blocks do not have hames. Y ou declare them at the point in an application where they are

to be run, and they are passed to the PL/SQL engine for execution at run time.

The section between the keywords DECLARE and BEG N isreferred to as the declaration
section. In the declaration section, you define the PL/SQL objects such as variables, constants,
cursors, and user-defined exceptions that you want to reference within the block. The

DECL ARE keyword is optional if you do not declare any PL/SQL objects.
The BEG N and END keywords are mandatory and enclose the body of actions to be performed.
This section is referred to as the executable section of the block.
The section between EXCEPTI ON and END isreferred to as the exception section. The
exception section traps error conditions. Init, you define actions to take if the specified
condition arises. The exception section is optional.

The keywords DECLARE, BEQ N, and EXCEPTI ONare not followed by semicolons, but END and all

other PL/SQL statements do require semicol ons.

Oracle9i: Program with PL/SQL 9-6

9-7

Block Structure for PL/SQL Subprograms

<header> —
IS|AS —
Declaration section
BEG N
Executable section
EXCEPTION (optional) [Subprogram Body

Exception section
END; —

> Subprogram Specification

Copyright © Oracle Corporation, 2001. All rights reserved.

Subprograms

Subprograms are named PL/SQL blocks that can accept parameters and be invoked from a calling
environment. PL/SQL has two types of subprograms, procedures and functions.

Subprogram Specification

The header is rdlevant for named blocks only and determines the way that the program unit is
called or invoked.

The header determines:

Thel

The PL/SQL subprogram type, that is, either a procedure or a function
The name of the subprogram

The parameter list, if one exists

The RETURN clause, which applies only to functions

S or AS keyword is mandatory.

Subprogram Body
The declaration section of the block between | S| AS and BEG N. The keyword DECLARE that is
used to indicate the starting of the declaration section in anonymous blocks is not used here.

The executable section between the BEG N and END keywords is mandatory, enclosing the body
of actions to be performed. There must be at Ieast one statement existing in this section. There
should be atleast a NULL; statement, that is considered an executable statement.

The exception section between EXCEPTI ON and END is optional. This section traps predefined
error conditions. In this section, you define actions to take if the specified error condition arises.

Oracle9i: Program with PL/SQL 9-7

PL/SQL Subprograms

TR [Too o
oo xxx .Jt | e e -
______________ P
XXX XXX XXX [| XXX XXX XXX | —
XXX XXX XXX | XXX XXX XXX P
-------------- Subprogram P, TTTTTTTT TTT TR
§§§ §§§ §§§ :l— which contains the P
______________ repeated code

""""""" PL/SQL program invoking
the subprogram at multiple
locations

Code repeated more than
oncein a PL/SQL program

9-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Subprograms

The diagram in the dlide explains how you can replace a sequence of PL/SQL statements repeated in a
PL/SQL block with a subprogram.

When a sequence of statements is repeated more than once in a PL/SQL subprogram, you can create a
subprogram with the repeated code. Y ou can invoke the subprogram at multiple locations in a PL/SQL
block. After the subprogramis created and stored in the database, it can be invoked any number of times
and from multiple applications.

Oracle9i: Program with PL/SQL 9-8

Benefits of Subprograms

* Easy maintenance

* Improved data security and integrity
* Improved performance

* Improved code clarity

9-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Benefits of Subprograms

Stored procedures and functions have many benefits in addition to modularizing application
devel opment:

» Easy maintenance
— Moaodify routines online without interfering with other users
— Modify one routine to affect multiple applications
— Moaodify oneroutine to diminate duplicate testing

e Improved data security and integrity

— Control indirect access to database objects from nonprivileged users with security
privileges

— Ensurethat related actions are performed together, or not at all, by funneling activity for
related tables through a single path

e Improved performance
— Avoid reparsing for multiple users by exploiting the shared SQL area
— Avoid PL/SQL parsing at run time by parsing at compile time

— Reduce the number of calls to the database and decrease network traffic by bundling
commands

» Improved code clarity: Using appropriate identifier names to describe the action of the routines

reduces the need for comments and enhances the clarity of the code.
Oracle9i: Program with PL/SQL 9-9

Developing Subprograms by Using
ISQL*Plus

B logezec.sql - Motepad =13
File Edit Search Help

CREATE DR REPLACE PROCEDURE log execution -
18
BEGIN

IHSERT INTO log_table {(user_id, log_date)

UALUES {user, sysdate);
END log_execution;

|

Browse... I Load Script "

Enter statements: @ @

REM Run the 01_addtabs. sql script befare running this script
REM ta ensure that the log_table is created.

Script Lo(;ation;lD:\demo\m_Iogexec.sql

CREATE OR REFLACE PROCEDURE log_execution
1S

-«
BEGIN
INSERT INTO log_table {user_id, log_date)
WALLUES {user, sysdate);

EMD log_execution;

|
% Output: [Work Screen =]

Clear Screen | Save Script |

9-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Developing Subprograms by Using iSQL*Plus

iSQL*Plusis an Internet-enabled interface to SQL*Plus. Y ou can use a Web browser to connect

to an Oracle database and perform the same actions as you would through other SQL*Plus
interfaces.

1. Use atext editor to create a SQL script file to define your subprogram. The examplein the
dlide creates the stored procedure LOG_EXECUTI ON without any parameters. The procedure
records the username and current date in a database table called LOG_TABLE.

From i SQL*Plus browser window:
2. Use the Browse button to locate the SQL script file.
3. Usethe Load Script button to load the script into the i SQL*Plus buffer.

4. Use the Execute button to run the code. By default, the output from the codeis displayed on
the screen.

PL/SQL subprograms can also be created by using the Oracle devel opment tools such as Oracle
Forms Developer.

Oracle9i: Program with PL/SQL 9-10

Invoking Stored Procedures
and Functions

Scott LOG_EXECUTI ON

iy procedure
-
T
4 VVVVVVVVVVVVVV

: - —>
l! \ A/ \" ‘ XXXXXXXXXXXXXX
—

g /-‘_ - \/ VVVVVVVVVWVVWY
V4 S| XXXXXXXXXXXXXX
] vwvvwwvvwwvvvy
XXXXXXXXXXXXXX
| @ VVVVVVVVVWVVWY
XXXXXXXXXXXXXX XXXXXXXXXXXXXX

.

VVVVVVVVVVVVVV VVVVVWVVVWVVWY
>
Oracle Oracle Oracle ———“— A
Portal Discoverer Forms Y
XXXXXXXXXXXXXX
Developer MM
VVVVVVVVVVVVVV : :
Scott
9-11 Copyright © Oracle Corporation, 2001. All rights reserved.

How to Invoke Stored Procedur es and Functions

Y ou can invoke a previously created procedure or function from a variety of environments such as
iSQL*Plus, Oracle Forms Develaper, Oracle Discoverer, Oracle Portal, another stored procedure,
and many other Oracle tools and precompiler applications. The table below describes how you can
invoke a previously created procedure, | og_execut i on, from avariety of environments.

iSQL*Plus EXECUTE | og_executi on

Oracle development toolssuch | | og_executi on;
as Oracle Forms Developer

Another procedure CREATE OR REPLACE PRCCEDURE | eave_enp
(p_id I N enpl oyees. enpl oyee_i d%I'YPE)
IS
BEGA N

DELETE FROM enpl oyees
WHERE enpl oyee id = p_id;
| og_executi on;
END
| eave_enp;

Oracle9i: Program with PL/SQL 9-11

What Is a Procedure?

® A procedure is atype of subprogram that performs
an action.

®* A procedure can be stored in the database, as a
schema object, for repeated execution.

9-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Definition of a Procedure

A procedure is a named PL/SQL block that can accept parameters (sometimes referred to as
arguments), and be invoked. Generally speaking, you use a procedure to perform an action. A
procedure has a header, a declaration section, an executable section, and an optional exception-
handling section.

A procedure can be compiled and stored in the database as a schema object.

Procedures promote reusability and maintainability. When validated, they can be used in any number
of applications. If the requirements change, only the procedure needs to be updated.

Oracle9i: Program with PL/SQL 9-12

Syntax for Creating Procedures

CREATE [OR REPLACE] PRCCEDURE procedure_nane
[(paraneterl [nodel] datatypel,
paraneter2 [node2] datatype2,

o)]
I S| AS
PL/ SQ Bl ock;

* The REPLACE option indicates that if the procedure
exists, it will be dropped and replaced with the
new version created by the statement.

* PL/SQL block starts with either BEG Nor the

declaration of local variables and ends with either
END or END procedure_name.

‘ 9-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Syntax for Creating Procedures
Syntax Definitions

Par ameter Description
pr ocedur e_nane Name of the procedure
par anmet er Name of a PL/SQL variable whose valueis passed to or populated by
the calling environment, or both, depending on the mode being used
node Type of argument:
I N (default)
out
I N OUT
Data type Datatype of the argument—can be any SQL / PLSQL datatype. Can be
of %' YPE, YROWTYPE, or any scalar or composite data type.
PL/ SQL bl ock Procedural body that defines the action performed by the procedure

Y ou create new procedures with the CREATE PROCEDURE statement, which may declare alist of
parameters and must define the actions to be performed by the standard PL/SQL block. The CREATE
clause enables you to create stand-alone procedures, which are stored in an Oracle database.

» PL/SQL blocks start with either BEG N or the declaration of local variables and end with either
END or END pr ocedur e_nare. Y ou cannot reference host or bind variables in the PL/SQL
block of a stored procedure.

» The REPLACE option indicates that if the procedure exists, it will be dropped and replaced
with the new version created by the statement.

* You cannot restrict the size of the data type in the parameters.
Oracle9i: Program with PL/SQL 9-13

Developing Procedures

Editor

ode to creat file.sql
procedure

ISQL*Plus
[Load and executefil e. sql]

e)
Oracle [Source code] (Use SHOWERRORS

to view

.compilation error
[P code J Procedure

created)
Execute

9-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Developing Procedures

Following are the main steps for developing a stored procedure. The next two pages provide more detail
about creating procedures.

1

2.

Write the syntax: Enter the code to create a procedure (CREATE PROCEDURE statement) in a system
editor or word processor and saveit asa SQL script file (. sgl extension).

Compilethe code: Using i SQL*Plus, load and run the SQL script file. The source code is compiled into
P code and the procedureis created.

A script file with the CREATE PROCEDURE (or CREATE OR REPLACE PROCEDURE) statement
enabl es you to change the statement if there are any compilation or run-time errors, or to make
subsequent changes to the statement. Y ou cannot successfully invoke a procedure that contains any
compilation or run-time errors. In iSQL*Plus, use SHONVERRORS to see any compilation errors.
Running the CREATE PROCEDURE statement stores the source code in the data dictionary even if the
procedure contains compilation errors. Fix the errorsin the code using the editor and recompile the
code.

3. Execute the procedure to perform the desired action. After the source code is compiled and the

procedureis successfully created, the procedure can be executed any number of times using the
EXECUTE command from iSQL*Plus. The PL/SQL compiler generates the pseudocode or P code,

based on the parsed code. The PL/SQL engine executes this when the procedure is invoked.

Note: If there are any compilation errors, and you make subsequent changes to the CREATE PROCEDURE
statement, you must either DROP the procedurefirst, or use the OR REPLACE syntax.

Y ou can create client side procedures that are used with client-side applications using tools such as the Oracle
Forms and Reports of Oracle integrated development environment (IDE). Refer to Appendix F to see how the
client side subprograms can be created using the Oracle Procedure Builder tool.

Oracle9i: Program with PL/SQL 9-14

Formal Versus Actual Parameters

* Formal parameters: variables declared in the
parameter list of a subprogram specification

Example:
CREATE PROCEDURE rai se_sal (p_id NUMBER, p_anount NUMBER)

END r ai se_sal ;

® Actual parameters: variables or expressions
referenced in the parameter list of a subprogram call

Example:
rai se_sal (v_id, 2000)

9-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Formal Versus Actual Parameters

Formal parameters are variables declared in the parameter list of a subprogram specification. For
example, in the procedure RAI SE_SAL, the variables P_I Dand P_AMOUNT are formal parameters.

Actual parameters are variables or expressions referenced in the parameter list of a subprogram call.
For example, inthecall rai se_sal (v_i d, 2000) to the procedure RAl SE_SAL, the variable
V_| Dand 2000 are actual parameters.

e Actual parameters are evaluated and results are assigned to formal parameters during the
subprogram call.

* Actual parameters can also be expressions such as in the following:
rai se_sal (v_id,rai se+100);

» Itisgood practiceto use different names for formal and actual parameters. Formal parameters
have the prefix p_ inthis course.

e Theformal and actual parameters should be of compatible data types. If necessary, before
assigning the value, PL/SQL converts the data type of the actual parameter value to that of the
formal parameter.

Oracle9i: Program with PL/SQL 9-15

Calling

environment L] aut parameter

9-16

Procedural Parameter Modes

Procedure
] I Nparameter

N QUT parameter

(DECLARE)

BEG N

[1

EXCEPTI ON

[1

END;

Copyright © Oracle Corporation, 2001. All rights reserved.

Procedural Parameter Modes

Y ou can transfer values to and from the calling environment through parameters. Select one of the
three modes for each parameter: | N, OUT, or | NOUT.

Attempts to change the value of an IN parameter will result in an error.

Note: DATATYPE can be only the % YPE definition, the RONTYPE definition, or an explicit data
type with no size specification.

Type of Parameter Description

I N (default) Passes a constant val ue from the calling environment into the procedure
aut Passes a value from the procedure to the calling environment

IN QUT Passes avalue from the calling environment into the procedure and a

possibly different value from the procedure back to the calling
environment using the same parameter

Oracle9i: Program with PL/SQL 9-16

Creating Procedures with Parameters

I N ouT I N QUT

Default mode Must be specified| Must be specified
Value is passed into Returned to Passed into
subprogram calling subprogram;

environment returned to calling

environment

Formal parameter acts as | Uninitialized Initialized variable
a constant variable

Actual parameter can be a |Must be a variabld
literal, expression,
constant, or initialized

Must be a variable

variable
Can be assigned a default | Cannot be Cannot be
value assigned assigned

a default value a default value
9-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Procedures with Parameters
When you create the procedure, the formal parameter defines the value used in the executabl e section
of the PL/SQL block, whereas the actual parameter is referenced when invoking the procedure.

The parameter mode | Nisthe default parameter mode. That is, no modeis specified with a parameter,
the parameter is considered an | N parameter. The parameter modes OUT and | N OUT must be
explicitly specified in front of such parameters.

A formal parameter of I N mode cannot be assigned avalue. That is, an | N parameter cannot be
modified in the body of the procedure.

An QUT or | NQOUT parameter must be assigned a value before returning to the calling environment.
I N parameters can be assigned a default value in the parameter list. OUT and | N OUT parameters
cannot be assigned default values.

By default, thel N parameter is passed by reference and the OUT and | N QUT parameters are passed
by value. To improve performance with OUT and | N QUT parameters, the compiler hint NOCOPY can
be used to request to pass by reference. Using NOCOPY is discussed in detail in the Advanced PL/SQL
course.

Oracle9i: Program with PL/SQL 9-17

| NParameters: Example

176 > | p_id

CREATE OR REPLACE PROCEDURE rai se_sal ary
(p_id I N enpl oyees. enpl oyee_i d%I YPE)
IS
BEG N
UPDATE enpl oyees
SET salary = salary * 1.10
WHERE enployee_id = p_id;
END rai se_sal ary;
/

Procedure created.

9-18 Copyright © Oracle Corporation, 2001. All rights reserved.

| NParameters: Example

The examplein the dide shows a procedure with onel N parameter. Running this statement in
iSQL*Plus creates the RAI SE_SALARY procedure. When invoked, RAI SE_SALARY accepts the
parameter for the employee ID and updates the employe€’ s record with a salary increase of 10 percent.

To invoke a procedure in iSQL*Plus, use the EXECUTE command.
EXECUTE raise _salary (176)

To invoke a procedure from another procedure, use a direct call. At thelocation of calling the new
procedure, enter the procedure name and actual parameters.

raise_salary (176);

I N parameters are passed as constants from the calling environment into the procedure. Attempts to
changethevalue of an| N parameter result in an error.

Oracle9i: Program with PL/SQL 9-18

Calling environment

QUT Parameters: Example

QUERY_EMP procedure

171 > p.id
< SMITH | p_name
< 7400 | Pp_salary
<| 0.15 p_comm
9-19 Copyright © Oracle Corporation, 2001. All rights reserved.

OUT Parameters: Example

In this example, you create a procedure with OUT parameters to retrieve information about an
employee. The procedure accepts avalue 171 for employee ID and retrieves the name, salary, and
commission percentage of the employee with ID 171 into the three output parameters. The code to

create the QUERY _EMP procedure is shown in the next dide.

Oracle9i: Program with PL/SQL 9-19

OUT Parameters: Example

enp_query. sql
CREATE OR REPLACE PROCEDURE query_enp
(p_id IN enpl oyees. enpl oyee_i d%'YPE,

p_narme OQUT enpl oyees. | ast _nane% YPE,
p_salary OUT enployees. sal ary%d YPE,
p_comm OQUT enpl oyees. commi ssi on_pct Y4 YPE)
IS
BEG N
SELECT | ast_nane, salary, comm ssion_pct
I NTO p_name, p_salary, p_comm
FROM enpl oyees
WHERE enployee_id = p_id;
END query_enp;
/

Procedure created.

9-20 Copyright © Oracle Corporation, 2001. All rights reserved.

QUT Parameters: Example (continued)

Run the script file shown in the dide to create the QUERY _EMP procedure. This procedure has four
formal parameters. Three of them are OUT parameters that return values to the calling environment.
The procedure accepts an EMPLOYEE | D value for the parameter P_I D. The name, salary, and
commission percentage values corresponding to the employee ID areretrieved into the three OUT
parameters whose values are returned to the calling environment.

Notice that the name of the script file need not be the same as the procedure name. (The script fileis
on the client side and the procedureis being stored on the database schema.)

Oracle9i: Program with PL/SQL 9-20

Viewing OUT Parameters

® Load and run the enp_query. sqgl script file to
create the QUERY_EMP procedure.

* Declare host variables, execute the QUERY EMP
procedure, and print the value of the global G_NAME

variable.

VARl ABLE g_name VARCHAR2(25)
VAR ABLE g_sal NUVBER

VARl ABLE g_comm NUVBER

EXECUTE query_enp(171, :g_nane, :g_sal, :g_conm

PRI NT g_nane

PL/SQL procedure successfully completed.

| G_NAME
|Smith

‘ 9-21 Copyright © Oracle Corporation, 2001. All rights reserved.

How to View the Value of QUT Parameters with iSQL*Plus

1. Runthe SQL script fileto generate and compile the source code.
2. Create host variables in iSQL*Plus, using the VARI ABLE command.

3. Invokethe QUERY _EMP procedure, supplying these host variables asthe OUT parameters. Note the
use of the colon (:) to reference the host variables in the EXECUTE command.

4. Toview the values passed from the procedure to the calling environment, use the PRI NT command.

The examplein the dide shows the value of the G_NAIVE variable passed back to the the calling
environment. The other variables can be viewed, dther individually, as above, or with asingle PRI NT
command.

PRINT g nanme g_sal g_comm

Do not specify asizefor ahost variable of data type NUVBER when using the VARI ABLE command. A
host variable of data type CHAR or VARCHARZ defaults to alength of one, unless avalueis supplied in
parentheses.

PRI NT and VARI ABLE areiSQL*Plus commands.

Note: Passing a constant or expression as an actual parameter to the OUT variable causes compilation
errors. For example

EXECUTE query _enp(171, :g nane, raise+l00, :g _conm
causes a compilation error.

Oracle9i: Program with PL/SQL 9-21

| NOUT Parameters

Calling environment FORMAT_PHONE procedure

.

'8006330575' | | | |'(800)633-0575' | p_phone_no

-5

CREATE OR REPLACE PROCEDURE format _phone
(p_phone_no I N OUT VARCHAR?2)
IS
BEG N
p_phone_no := " (' || SUBSTR(p_phone_no,1,3) ||
)" || SUBSTR(p_phone_no, 4,3) ||
- || SUBSTR(p_phone_no, 7);

END f or mat _phone;
/

Procedure created.

9-22 Copyright © Oracle Corporation, 2001. All rights reserved.

Using | NOUT Parameters

Withan | N QUT parameter, you can pass values into a procedure and return a value to the calling
environment. The value that isreturned is @ther the original, an unchanged value, or a new value set
within the procedure.

An| N OUT parameter acts asan initialized variable.
Example

Create a procedure with an | N OUT parameter to accept a character string containing 10 digits and
return a phone number formatted as (800) 633-0575.

Run the statement to create the FORMAT _PHONE procedure.

Oracle9i: Program with PL/SQL 9-22

Viewing | NOUT Parameters

VARI ABLE g_phone_no VARCHAR2(15)
BEG N

: g_phone_no : = '8006330575";
END;
/
PRI NT g_phone_no
EXECUTE f or mat _phone (:g_phone_no)
PRI NT g_phone_no

PLISQL procedure successfully completed.

| G_PHONE_NO
|B006330575
PL/SQL procedure successfully completed.
| G_PHONE_NO
|(BOm)E33-0575
9-23 Copyright © Oracle Corporation, 2001. All rights reserved.

How to View | NOUT Parameters with iSQL*Plus
1. Createahost variable, using the VARl ABLE command.
2. Populate the host variable with a value, using an anonymous PL/SQL block.

3. Invokethe FORMAT _PHONE procedure, supplying the host variable asthe | N QUT parameter.
Note the use of the colon (:) to reference the host variable in the EXECUTE command.

4. To view the value passed back to the calling environment, use the PRI NT command.

Oracle9i: Program with PL/SQL 9-23

Methods for Passing Parameters

* Positional: List actual parameters in the same
order as formal parameters.

* Named: List actual parameters in arbitrary order
by associating each with its corresponding formal
parameter.

® Combination: List some of the actual parameters
as positional and some as named.

9-24 Copyright © Oracle Corporation, 2001. All rights reserved.

Parameter Passing Methods

For a procedure that contains multiple parameters, you can use a humber of methods to specify the
values of the parameters.

Method Description
Positional Lists valuesin the order in which the parameters are declared

Named association |Listsvaluesin arbitrary order by associating each one with its
parameter name, using special syntax (=>)

Combination Liststhefirst values positionally, and the remainder using the
specia syntax of the named method

Oracle9i: Program with PL/SQL 9-24

DEFAULT Option for Parameters

CREATE OR REPLACE PROCEDURE add_dept
(p_nane I N departnents. depart nent _nanme%l YPE
[DEFAULT ' unknown'|,
p_Il oc I N departnents. | ocation_i dW'YPE
[DEFAULT 1700) |

IS
BEG N
I NSERT | NTO depart nent s(departnent _id,
departnment _nane, | ocation_id)
VALUES (departnents_seq. NEXTVAL, p_nane, p_loc);
END add_dept;
/

Procedure created.

9-25 Copyright © Oracle Corporation, 2001. All rights reserved.

Example of Default Values for Parameters

You caninitialize IN parameters to default values. That way, you can pass different numbers of actual
parameters to a subprogram, accepting or overriding the default values as you please. Moreover, you
can add new formal parameters without having to change every call to the subprogram.

Execute the statement in the dide to create the ADD _DEPT procedure. Note the use of the DEFAULT
clausein the declaration of the formal parameter.

You can assign default values only to parameters of thel Nmode. OQUT and | N QUT parameters are
not permitted to have default values. If default values are passed to these types of parameters, you get
the following compilation error:

PLS-00230: OUT and IN QUT formal parameters may not have defaul t
expr essi ons

If an actual parameter is not passed, the default value of its corresponding formal parameter is used.
Consider the calls to the above procedure that are depicted in the next page.

Oracle9i: Program with PL/SQL 9-25

Examples of Passing Parameters

BEG N
add_dept ;
add_dept (' TRAINING , 2500);
add_dept (p_loc => 2400, p_nanme =>' EDUCATI ON);
add_dept (p_loc => 1200) ;
END;
/
SELECT department _id, department_nane, |ocation_id
FROM depart nent s;

PLIZ QL procedure successfilly completed.

DEPARTMENT _ID | DEPARTMENT_NAME
10 ||Administration 1700
20 [Marketing 1800

| | LOCATION_ID
| |
| |
| 30 [Purchasing | 1700
| |
| |
| |
| |

24N

290 [TRAINING
300 [EDUCATION
310 |unkn0wn

2500
2400
1200

31 rows selected.

9-26 Copyright © Oracle Corporation, 2001. All rights reserved.

Example of Default Values for Parameters (continued)

The anonymous block above shows the different ways the ADD DEPT procedure can beinvoked, and
the output of each way the procedureis invoked.

Usually, you can use positional notation to override the default values of formal parameters. However,
you cannot skip aformal parameter by leaving out its actual parameter.

Note: All the positional parameters should precede the named parameters in a subprogram call.
Otherwise, you will receive an error message, as shown in the following example:

EXECUTE add_dept (p_nanme=>' new dept', 'new |ocation')
BEGIN add dept(p name=>'new dept’, 'new location’); ENI,
E

EEEOE. at line 1

OFA-06550: line 1, column 26

PLE-00312: a positional parameter association may not follow a named association
OB A-06550: ine 1, column 7

PLAZQL: Statement iznored

Oracle9i: Program with PL/SQL 9-26

Declaring Subprograms

| eave enp2. sql

CREATE OR REPLACE PROCEDURE | eave_enp2
(p_id IN enployees. enpl oyee_i d%dYPE)
IS

PROCEDURE | og_exec

IS

BEG N
I NSERT I NTO | og_table (user_id, |og_date)
VALUES (USER, SYSDATE);

END | og_exec;

BEG N

DELETE FROM enpl oyees

WHERE enpl oyee_id = p_id;

| og_exec;

ND [eave_enp2;

9-27 Copyright © Oracle Corporation, 2001. All rights reserved.

Declaring Subprograms

You can declare subprograms in any PL/SQL block. Thisis an alternative to creating the stand-alone
procedure LOG_EXEC. Subprograms declared in this manner are called local subprograms (or local
modules). Because they are defined within a declaration section of ancther program, the scope of local
subprogramsiis limited to the parent (enclosing) block in which they are defined. This means that local
subprograms cannot be called from outside the block in which they are declared. Declaring local
subprograms enhances the clarity of the code by assigning appropriate business-ruleidentifiersto
blocks of code.

Note: You must declare the subprogram in the declaration section of the block, and it must be the last
item, after all the other program items. For example, a variable declared after the end of the
subprogram, before the BEA N of the procedure, will cause a compilation error.

If the code must be accessed by multiple applications, place the subprogram in a package or create a
stand-alone subprogram with the code. Packages are discussed later in this course.

Oracle9i: Program with PL/SQL 9-27

Invoking a Procedure from an Anonymous
PL/SQL Block

DECLARE
v_id NUMBER : = 163;
BEG N
rai se_salary(v_id); --invoke procedure
COW T;
END;
9-28 Copyright © Oracle Corporation, 2001. All rights reserved.

Invoking a Procedure from an Anonymous PL/SQL Block
Invokethe RAI SE_SALARY procedure from an anonymous PL/SQL block, as showninthedide.
Procedures are callable from any tool or language that supports PL/SQL.
You have aready seen how to invoke an independent procedure fromiSQL*Plus.

Oracle9i: Program with PL/SQL 9-28

Invoking a Procedure from Another
Procedure

process_enps. sql

CREATE OR REPLACE PROCEDURE process_enps
IS
CURSCOR enp_cursor 1S
SELECT enpl oyee_id
FROM enpl oyees;
BEG N
FOR enp_rec | N enp_cursor
LOOP.
rai se_sal ary(enp_rec. enpl oyee_id);
END LOOP;
COW T,
END pr ocess_enps;
/

9-29 Copyright © Oracle Corporation, 2001. All rights reserved.

Invoking a Procedure from Another Procedure

This example shows you how to invoke a procedure from another stored procedure. The

PROCESS EMPS stored procedure uses a cursor to process all the records in the EMPLOYEES table
and passes each employee’ s 1D to the RAI SE_SALARY procedure, which resultsin a 10 percent
salary increase across the company.

Oracle9i: Program with PL/SQL 9-29

Handled Exceptions

Called procedure

Calling procedure > PROCEDURE
PROC2 ...

PROCEDURE 1S
PROC1 ... C
IS BEG N

C C <«— Exception raised
BEG N EXCEPTI ON _

. . -«—— Exception handled

PROC2(argl); [— |END PROCZ;

... - I
EXCEPTI ON Control returns to
END PROCL: calling procedure

9-30 Copyright © Oracle Corporation, 2001. All rights reserved.

How Handled Exceptions Affect the Calling Procedure

When you devel op procedures that are called from other procedures, you should be aware of the
effects that handled and unhandled exceptions have on the transaction and the calling procedure.

When an exception is raised in a called procedure, control immediately goes to the exception section
of that block. If the exception is handled, the block terminates, and control goes to the calling

program. Any data manipulation language (DML) statements issued before the exception was raised
remain as part of the transaction.

Oracle9i: Program with PL/SQL 9-30

Handled Exceptions

CREATE PROCEDURE p2_i ns_dept (p_l ocid NUMBER) | S
v_di d NUMBER(4);
BEG N
DBMS_QUTPUT. PUT_LI NE(' Procedure p2_ins_dept started');
| NSERT | NTO departnents VALUES (5, 'Dept 5', 145, p_locid);
SELECT department _id I NTO v_di d FROM enpl oyees
WHERE enpl oyee_id = 999;

END;

CREATE PROCEDURE pl_ins_loc(p_lid NUVMBER, p_city VARCHAR2)
IS

v_city VARCHAR2(30); v_dnane VARCHAR2(30);

BEG N

DBVS_OUTPUT. PUT_LI NE(' Mai n Procedure pl_ins_loc');

I NSERT I NTO | ocations (location_id, city) VALUES (p_lid, p_city);
SELECT city INTOv_city FROM | ocati ons WHERE | ocation_id = p_lid;
DBVS_OUTPUT. PUT_LINE(" I nserted city '"||v_city);

DBVS_OUTPUT. PUT_LI NE(' I nvoki ng the procedure p2_ins_dept ...");
—--| p2_ins_dept (p_lid); |
EXCEPTI ON

WHEN NO_DATA _FOUND THEN

DBVS_OUTPUT. PUT_LI NE(" No such dept/l oc for any enpl oyee');
END,

9-31 Copyright © Oracle Corporation, 2001. All rights reserved.

How Handled Exceptions Affect the Calling Procedure (continued)

The exampl e in the dide shows two procedures. Procedure P1_| NS _LCOCinserts anew location
(supplied through the parameters) into the LOCATI ONS table. Procedure P2_| NS_DEPT inserts a new
department (with department ID 5) at the new location inserted through the P1_| NS L OC procedure.
TheP1 | NS _LOC procedureinvokesthe P2 | NS DEPT procedure.

TheP2_|I NS_DEPT procedure has a SELECT statement that sd ects DEPARTMENT _| Dfor a
nonexisting employee and raisesaNO_DATA FOUND exception. Because this exception is not handled
intheP2_1 NS_DEPT procedure, the control returns to the calling procedure P1_| NS _LOC wherethe
exception is handled. As the exception is handled, the DML intheP2_| NS_DEPT procedureis not
rolled back and is part of the transaction of theP1_| NS_LQOC procedure.

Thefollowing code shows that the | NSERT statements from both the procedures are successful:
EXECUTE pl_ins_loc(1l, 'Redwood Shores')
SELECT location_id, city FROM I ocati ons

WHERE | ocation_id = 1;

SELECT * FROM departnments WHERE departnent _id = 5;
PL/ZQL procedure succeszsfully completed.

| LOCATION_ID | CITY
| 1 |Redwaad Shares

| DEPARTMENT ID | DEPARTMENT NAME | MANAGER ID | LOCATION_ID
| 5 |Dept 5 | 145 || 1

Oracle9i: Program with PL/SQL 9-31

Unhandled Exceptions

Called procedure

Calling procedure

—» PROCEDURE
PROCEDURE PROC2 ...
PROCL . .. 'S
e —— eXception raise
BEG " EXCEPTI O\l(_* Exception unhandled
PROC2(argl)) = end PrRoC?:
EXCEPTI ON
END PRQOC1; Control returned to

exception section of
calling procedure

9-32 Copyright © Oracle Corporation, 2001. All rights reserved.

How Unhandled Exceptions Affect the Calling Procedure

When an exception is raised in a called procedure, control immediately goes to the exception section
of that block. If the exception is unhandled, the block terminates, and control goes to the exception

section of the calling procedure. PL/SQL does not roll back database work that is done by the
subprogram.

If the exception is handled in the calling procedure, all DML statements in the calling procedure and
in the called procedure remain as part of the transaction.

If the exception is unhandled in the calling procedure, the calling procedure terminates and the
exception propagates to the calling environment. All the DML statements in the calling procedure and
the called procedure are rolled back along with any changes to any host variables. The host
environment determines the outcome for the unhandled exception.

Oracle9i: Program with PL/SQL 9-32

Unhandled Exceptions

3 TE PROCEDURE p2_noexcep(p_l ocid NUMBER) | S
v_di d NUMBER(4);
BEG N
DBMS_QUTPUT. PUT_LI NE(' Procedure p2_noexcep started');
| NSERT | NTO departnents VALUES (6, 'Dept 6', 145, p_locid);
SELECT department _id I NTO v_di d FROM enpl oyees
WHERE enpl oyee_id = 999;

END;

CREATE PROCEDURE pl_noexcep(p_lid NUMBER p_city VARCHAR?)
IS

v_city VARCHAR2(30); v_dname VARCHARZ2(30);

BEG N

DBVMS_QUTPUT. PUT_LI NE(' Main Procedure pl_noexcep');
I NSERT I NTO | ocations (location_id, city) VALUES (p_lid, p_city);
SELECT city INTOv_city FROM | ocati ons WHERE | ocation_id = p_lid;
DBMS_QUTPUT. PUT_LI NE(' I nserted new city '||v_city);

DBMS_QUTPUT. PUT_LI NE(' | nvoki ng t he procedure p2_noexcep ..."');
-—|-p2_noexcep(p_lid); |
END,

‘ 9-33 Copyright © Oracle Corporation, 2001. All rights reserved.

How Unhandled Exceptions Affect the Calling Procedure (continued)

The exampl e in the dide shows two procedures. Procedure P1_ NOEXCEP inserts anew location
(supplied through the parameters) into the LOCATI ONS table. Procedure P2_ NOEXCEP inserts a new
department (with department ID 5) at the new location inserted through the P1_ NOCEXCEP procedure.
Procedure P1_ NCEXCEP invokes the P2_ NOEXCEP procedure.

The P2_NCEXCEP procedure has a SELECT statement that selects DEPARTMENT | Dfor a nonexisting
employee and raisesaNO_DATA FOUND exception. Because this exception is not handled in the
P2 _NOEXCEP procedure, the contral returns to the calling procedure P1_ NOEXCEP. The exceptionis
not handled. Because the exception is not handled, the DML in the P2_ NOEXCEP procedureis rolled
back along with the transaction of the P1_ NOEXCEP procedure.
The following code shows that the DML statements from both the procedures are unsuccessful.
EXECUTE pl _noexcep(3, 'New Del hi')
SELECT location_id, city FROM I ocati ons

WHERE | ocation_id = 3;
SELECT * FROM departnments WHERE departnent _id = 6;

BEGIN g1 _noexcep3, M ew Delkd, EMD,
®

EEEOR at litie 1:

OF&-01403; no data found

OFA-06514: at "PLIQL P2 NOEXCEP", ne 7
ORA-06512; at "PLIQLP1 NOEXCEP", line 12
CFA-0&6512: at line 1

Oracle9i: Program with PL/SQL 9-33

Removing Procedures

Drop a procedure stored in the database.

Syntax:
DROP PROCEDURE pr ocedur e_nane

Example:

DROP PROCEDURE r ai se_sal ary;

Procedure dropped.

9-34 Copyright © Oracle Corporation, 2001. All rights reserved.

Removing Procedures

When a stored procedure is no longer required, you can use a SQL statement to drop it.

To remove a server-side procedure by using i SQL*Plus, execute the SQL command DROP
PROCEDURE.

Issuing rollback does not have an effect after executing a data definition language (DDL) command
such as DROP PROCEDURE, which commits any pending transactions.

Oracle9i: Program with PL/SQL 9-34

Summary

In this lesson, you should have learned that:

® A procedureis asubprogram that performs an
action.

®* You create procedures by using the CREATE
PROCEDURE command.

®* You can compile and save a procedure in the
database.

* Parameters are used to pass data from the calling
environment to the procedure.

®* There are three parameter modes: | N, QUT, and I N
QUT.

9-35 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

A procedure is a subprogram that performs a specified action. Y ou can compile and save a procedure
as stored procedure in the database. A procedure can return zero or more values through its parameters
toits calling environment. There arethree parameter modes | N, OUT, and | N OUT.

Oracle9i: Program with PL/SQL 9-35

Summary

®* Local subprograms are programs that are defined
within the declaration section of another program.

®* Procedures can be invoked from any tool or
language that supports PL/SQL.

®* You should be aware of the effect of handled and
unhandled exceptions on transactions and calling
procedures.

®* You can remove procedures from the database by
using the DROP PROCEDURE command.

®* Procedures can serve as building blocks for an
application.

9-36 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary (continued)

Subprograms that are defined within the declaration section of another program are called local
subprograms. The scope of the local subprograms is the program unit within which it is defined.

Y ou should be aware of the effect of handled and unhandled exceptions on transactions and calling
procedures. The exceptions are handled in the exception section of a subprogram.

Y ou can modify and remove procedures. Y ou can also create client-side procedures that can be used
by client-side applications.

Oracle9i: Program with PL/SQL 9-36

Practice 9 Overview

This practice covers the following topics:

® Creating stored procedures to:

— Insert new rows into atable, using the supplied
parameter values

— Update data in a table for rows matching with the
supplied parameter values

— Delete rows from atable that match the supplied
parameter values

— Query atable and retrieve data based on supplied
parameter values

* Handling exceptions in procedures
® Compiling and invoking procedures

9-37 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 9 Overview
In this practice you create procedures that issue DML and query commands.

If you encounter compilation errors when you are using iSQL*Plus, use the SHON ERRORS
command. Using the SHOWERRORS command is discussed in detail in the Managing Subprograms
lesson.

If you correct any compilation errorsiniSQL*Plus, do so inthe original script file, not in the buffer,
and then rerun the new version of thefile. This will save a new version of the procedure to the data
dictionary.

Oracle9i: Program with PL/SQL 9-37

Practice 9

Note: You can find table descriptions and sample datain Appendix D “Table Descriptions and
Data.”

Saveyour subprogramsas. sql files, usingthe Save Scri pt button.
Remember to set the SERVEROUTPUT ONif you set it off previoudly.
1. Createand invokethe ADD J OB procedure and consider the results.
a. Createaprocedure called ADD J(OB toinsert anew job into the JOBS table. Providethe
ID and title of thejob, using two parameters.

b. Compilethe code, and invoke the procedurewith | T_DBAasjob ID and Dat abase
Adm ni strat or asjobtitle Query the JOBS tableto view theresults.

| JOB ID | JOB_TITLE | MIN_SALARY | MAX SALARY
|IT_DEEA |Datahase Administrator | |

c. Invokeyour procedure again, passing ajob ID of ST _MANand ajob title of St ock
Manager . What happens and why?

2. Createaprocedure caled UPD _JCB to modify ajob in the JOBS table.

a. Createaprocedure called UPD _J(OB to update thejob title. Provide thejob ID and a new
title, using two parameters. Include the necessary exception handling if no update occurs.

b. Compilethe code invoke the procedure to changethejob titleof thejob ID | T_DBAto
Dat a Adm ni strat or. Query the JOBS tableto view theresults.

| JoB.ID | JOB_TITLE | MIN SALARY | MAX_SALARY
IT_DBA |Data Adrainistratar | |

Also check the exception handling by trying to update a job that does not exist (you can
usejob ID I T_WEBandjobtitleVleb Mast er).

3. Createaprocedurecalled DEL_JOB to delete ajob from the JOBS table.

a. Createaprocedurecalled DEL_J(OB to ddete ajob. Include the necessary exception
handling if no job is deleted.

b. Compilethe code invokethe procedureusingjob ID | T_DBA. Query the JOBS tableto
view the results.

ho rows selected

Also, check the exception handling by trying to delete a job that does not exist (usejob ID
I T_VEB). You should get the message you used in the exception-handling section of the

procedure as output.

Oracle9i: Program with PL/SQL 9-38

Practice 9 (continued)

4. Create aprocedure called QUERY _EMP to query the EMPLOYEES table, retrieving the salary
and job ID for an employee when provided with the employee I D.

a. Create aprocedurethat returns a value from the SALARY and JOB_| D columnsfor a
specified employee ID.

Use host variables for the two OUT parameters salary and job ID.

b. Compilethe code, invoke the procedure to display the salary and job ID for employee ID
120.

| G_SAL
| A000

| G_JOB
ST_MAN

c. Invokethe procedure again, passing an EMPLOYEE | D of 300. What happens and why?

Oracle9i: Program with PL/SQL 9-39

Oracle9i: Program with PL/SQL 9-40

Creating Functions

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

®* Describe the uses of functions

®* Create stored functions

* Invoke afunction

* Remove afunction

* Differentiate between a procedure and a function

10-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim
In this lesson, you will learn how to create and invoke functions.

Oracle9i: Program with PL/SQL 10-2

Overview of Stored Functions

e A functionis anamed PL/SQL block that returns
a value.

* A function can be stored in the database as a
schema object for repeated execution.

* A function is called as part of an expression.

10-3 Copyright © Oracle Corporation, 2001. All rights reserved.

Stored Functions

A function is a named PL/SQL block that can accept parameters and be invoked. Generally speaking,
you use a function to compute a value. Functions and procedures are structured alike. A function must
return avalue to the calling environment, whereas a procedure returns zero or more values to its
calling environment. Like a procedure, a function has a header, a declarative part, an executable part,
and an optional exception-handling part. A function must have a RETURN clause in the header and at
least one RETURN statement in the executabl e section.

Functions can be stored in the database as a schema object for repeated execution. A function stored in
the database is referred to as a stored function. Functions can also be created at client side
applications. This lesson discusses creating stored functions. Refer to appendix “ Creating Program
Units by Using Procedure Builder” for creating client-side applications.

Functions promote reusability and maintainability. When validated they can be used in any number of
applications. If the processing requirements change, only the function needs to be updated.

Function is called as part of a SQL expression or as part of a PL/SQL expression. In a SQL
expression, afunction must obey specific rules to control side effects. In a PL/SQL expression, the
function identifier acts like a variable whose value depends on the parameters passed to it.

Oracle9i: Program with PL/SQL 10-3

Syntax for Creating Functions

CREATE [OR REPLACE] FUNCTI ON function_nane
[(paraneterl [nodel] datatypel,
par anmet er 2 [node2] datatype2,
9]
RETURN dat at ype
I S| AS
PL/ SQL Bl ock;

The PL/SQL block must have at least one RETURN
statement.

10-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Creating Functions Syntax

A functionis aPL/SQL block that returns a value. Y ou create new functions with the CREATE
FUNCTI ON statement, which may declare a list of parameters, must return one value, and must define
the actions to be performed by the standard PL/SQL block.

» The REPLACE option indicates that if the function exists, it will be dropped and replaced with
the new version created by the statement.

e The RETURN data type must not include a size specification.

» PL/SQL blocks start with either BEG N or the declaration of local variables and end with either
ENDor ENDf unct i on_nane. There must be at least one RETURN (expr essi on)
statement. Y ou cannot reference host or bind variables in the PL/SQL block of a stored function.

Syntax Definitions

Parameter Description

function_nane Name of the function

par anet er Name of a PL/SQL variable whose value is passed into the function
nmode The type of the parameter; only | N parameters should be declared
dat at ype Datatype of the parameter

RETURN dat at ype | Datatype of the RETURN value that must be output by the function
PL/ SQL bl ock Procedural body that defines the action performed by the function

Oracle9i: Program with PL/SQL 10-4

Creating a Function

Editor _
[Code to creatﬂ file.sql
function

ISQL*Plus
[Load and executefil e. sql]

e I
Oracle[Source code]

{ P code JFunction

created)
Invoke

10-5 Copyright © Oracle Corporation, 2001. All rights reserved.

How to Develop Stored Functions

Thefollowing are the basic steps you use to develop a stored function. The next two pages provide
further details about creating functions.

1. Writethe syntax: Enter the codeto create a function in atext editor and save it asa SQL script
file.

2. Compilethe code: Using iSQL*Plus, upload and run the SQL script file. The source codeis
compiled into P code. The function is created.
3. Invokethe function from a PL/SQL block.
Returning a Value
» Add aRETURN clause with the data type in the header of the function.
* Include one RETURN statement in the executable section.

Although multiple RETURN statements are allowed in a function (usually within an | F statement),
only one RETURN statement is executed, because after the valueis returned, processing of the block
Ceases.

Note: The PL/SQL compiler generates the pseudocode or P code, based on the parsed code. The
PL/SQL engine executes this when the procedure is invoked.

Oracle9i: Program with PL/SQL 10-5

Creating a Stored Function
by Using iSQL*Plus

1. Enter the text of the CREATE FUNCTI ONstatement
in an editor and save it as a SQL script file.

2. Run the script file to store the source code and
compile the function.

3. Use SHOW ERRORS to see compilation errors.
4. When successfully compiled, invoke the function.

10-6 Copyright © Oracle Corporation, 2001. All rights reserved.

How to Create a Stored Function

1. Enter thetext of the CREATE FUNCTI ON statement in a system editor or word processor and
saveit asascript file(. sql extension).

2. FromiSQL*Plus, load and run the script file to store the source code and compile the source
codeinto P-code.

3. Use SHOWERRORS to see any compilation errors.

4. When the codeis successfully compiled, the function is ready for execution. Invoke the function
from an Oracle server environment.

A script file with the CREATE FUNCTI ON statement enables you to change the statement if
compilation or run-time errors occur, or to make subsequent changes to the statement. Y ou cannot
successfully invoke a function that contains any compilation or run-time errors. IniSQL*Plus, use
SHOW ERRORS to see any compilation errors.

Running the CREATE FUNCTI ON statement stores the source code in the data dictionary even if the
function contains compilation errors.

Note: If there are any compilation errors and you make subsequent changes to the CREATE
FUNCTI ON statement, you either have to drop the function first or use the OR REPLACE syntax.

Oracle9i: Program with PL/SQL 10-6

Creating a Stored Function by Using
ISQL*Plus: Example

get sal ary. sql]

CREATE OR REPLACE FUNCTI ON get _sal
(p_id [IN enployees. enpl oyee_i d%'YPE)
RETURN NUMBER
IS
v_sal ary enpl oyees. sal ary%'YPE : =0;
BEG N
SELECT sal ary
INTO v_salary
FROM enpl oyees
WHERE enployee_id = p_id;
RETURN v_sal ary;
END get _sal ;
/

10-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Example
Create a function with one | N parameter to return a number.

Run the script fileto create the GET _SAL function. Invoke a function as part of a PL/SQL expression,
because the function will return avalue to the calling environment.

It isa good programming practice to assign a returning value to a variable and use a single RETURN
statement in the executable section of the code. There can be a RETURN statement in the exception
section of the program also.

Oracle9i: Program with PL/SQL 10-7

Executing Functions

* Invoke afunction as part of a PL/SQL expression.
®* Create avariable to hold the returned value.

* Execute the function. The variable will be
populated by the value returned through a RETURN

statement.

10-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Function Execution

A function may accept one or many parameters, but must return asingle value. Y ou invoke functions
as part of PL/SQL expressions, using variables to hold the returned value.

Although the three parameter modes, | N (the default), OUT, and | N OUT, can be used with any
subprogram, avoid using the OUT and | N OQUT modes with functions. The purpose of afunctionisto
accept zero or more arguments (actual parameters) and return a single value. To have a function return
multiple values is poor programming practice. Also, functions should be free from side effects, which
change the values of variables that are not local to the subprogram. Side effects are discussed later in
this lesson.

Oracle9i: Program with PL/SQL 10-8

Executing Functions: Example

Calling environment GET_SAL function

117 > p_id

< RETURNV_sal ary

1. Load and run the get _sal ary. sql file to create the function

(2 —| VAR ABLE g_sal ary NUMBER

®—> EXECUTE :g_salary := get_sal (117)

@—> PRI NT g_sal ary
PLiSQL procedure successfully completed.

| G_SALARY
| 2800

10-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Example
Executethe GET_SAL function from iSQL*Plus:

1
2.

3.

Load and run the script fileget _sal ary. sql to createthe stored function GET _SAL.

Create a host variable that will be populated by the RETURN (var i abl e) statement within
the function.
Using the EXECUTE command in iSQL*Plus, invoke the GET_SAL function by creating a

PL/SQL expression. Supply a value for the parameter (employee ID in this example). The
value returned from the function will be held by the host variable, G_SALARY. Note the use of

the colon (;) to reference the host variable.
View the result of the function call by using the PRI NT command. Employee Tobias, with
employee D 117, earns amonthly salary of 2800.

In afunction, there must be at least one execution path that leads to a RETURN statement. Otherwise,
yougetaFunction returned w thout val ue erroratruntime

Oracle9i: Program with PL/SQL 10-9

Advantages of User-Defined Functions
in SQL Expressions

e Extend SQL where activities are too complex, too
awkward, or unavailable with SQL

®* Canincrease efficiency when used in the WHERE
clause to filter data, as opposed to filtering the
data in the application

e Can manipulate character strings

‘ 10-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Invoking User-Defined Functions from SQL Expressions
SQL expressions can reference PL/SQL user-defined functions. Anywhere a built-in SQL function
can be placed, a user-defined function can be placed as well.
Advantages
» Permits calculations that are too complex, awkward, or unavailable with SQL

* Increases data independence by processing complex data analysis within the Oracle server,
rather than by retrieving the data into an application

» Increases efficiency of queries by performing functions in the query rather than in the
application

» Manipulates new types of data (for example, latitude and longitude) by encoding character
strings and using functions to operate on the strings

Oracle9i: Program with PL/SQL 10-10

Invoking Functions in SQL Expressions:
Example

CREATE OR REPLACE FUNCTI ON tax(p_val ue I N NUVBER)
RETURN NUMBER | S
BEG N
RETURN (p_value * 0.08);
END t ax;
/
SELECT enpl oyee_id, |ast_nane, salary, tax(salary)
FROM enpl oyees
WHERE departnment _id = 100;

Function created.

I EMPLOYEE_ID I LAST_NAME [saLary I TAX{SALARY)
[108 [Graanbary [12000 | 960
[109 [Faviet [5000 | 720
| 110 |[Chen | 8200 || B56
| 111 |[Sciarra | 7700 || B
| 112 |[Urrman | 7800 || 524
| 113 [Popp | B900 || 552
B rows selected.
‘ 10-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Example

The slide shows how to create afunction t ax that isinvoked from a SELECT statement. The function
accepts a NUMBER parameter and returns the tax after multiplying the parameter value with 0.08.

IniSQL*Plus, invoke the TAX function inside a query displaying employee ID, name, salary, and tax.

Oracle9i: Program with PL/SQL 10-11

Locations to Call User-Defined Functions

* Select list of a SELECT command
* Condition of the WHERE and HAVI NG clauses

* CONNECT BY, START W TH, ORDER BY, and GROUP
BY clauses

® VALUES clause of the | NSERT command
® SET clause of the UPDATE command

‘ 10-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Usage of User-Defined Functions

PL/SQL user-defined functions can be called from any SQL expression where a built-in function can
be called.

Example:

SELECT enpl oyee_ id, tax(sal ary)
FROM enpl oyees
WHERE t ax(sal ary) >(SELECT MAX(tax(sal ary))
FROM enpl oyees WHERE departnent _id = 30)
ORDER BY tax(sal ary) DESC;

| EMPLOYEE_ID | TAX(SALARY)

| 100 | 1920
| 101 | 1360
| 102 | 1360
| 145 | 1120
| 145 | 1050
I and 1nAn

10 roves selected.

Oracle9i: Program with PL/SQL 10-12

Restrictions on Calling Functions from
SQL Expressions

To be callable from SQL expressions, a user-defined
function must:

®* Be astored function
®* Accept only | Nparameters

* Accept only valid SQL data types, not PL/SQL
specific types, as parameters

* Return datatypes that are valid SQL data types,
not PL/SQL specific types

‘ 10-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Restrictions When Calling Functions from SQL Expressions
To becallable from SQL expressions, a user-defined PL/SQL function must meet certain requirements.
e Parametersto a PL/SQL function called from a SQL statement must use positional notation.
Named notation is not supported.
e Stored PL/SQL functions cannot be called from the CHECK constraint clause of a CREATE or
ALTER TABLE command or be used to specify a default value for a column.
e You must own or have the EXECUTE privilege on the function to call it from a SQL statement.

e Thefunctions must return data types that are valid SQL datatypes. They cannot be PL/SQL-
specific data types such as BOOLEAN, RECORD, or TABLE. The same restriction applies to

parameters of the function.
Note: Only stored functions are callable from SQL statements. Stored procedures cannot be called.

The ability to use a user-defined PL/SQL function in a SQL expression is available with PL/SQL 2.1
and later. Toolsusing earlier versions of PL/SQL do not support this functionality. Prior to Oracle9i,
user-defined functions can be only single-row functions. Starting with Oracle9i, user-defined functions
can also be defined as aggregate functions.

Note: Functions that are callable from SQL expressions cannot contain OUT and | N QUT parameters.
Other functions can contain parameters with these modes, but it is not recommended.

Oracle9i: Program with PL/SQL 10-13

Restrictions on Calling Functions from
SQL Expressions

®* Functions called from SQL expressions cannot
contain DML statements.

®* Functions called from UPDATE/DELETE statements
on atable T cannot contain DML on the same table
T.

®* Functions called from an UPDATE or a DELETE
statement on a table T cannot query the same table.

* Functions called from SQL statements cannot
contain statements that end the transactions.

® C(Calls to subprograms that break the previous
restriction are not allowed in the function.

‘ 10-14 Copyright © Oracle Corporation, 2001. All rights reserved.

Controlling Side Effects

To execute a SQL statement that calls a stored function, the Oracle server must know whether the
function is free of side effects. Side effects are unacceptable changes to database tables. Therefore,
restrictions apply to stored functions that are called from SQL expressions.

Restrictions
* When called from a SELECT statement or a parallelized UPDATE or DELETE statement, the
function cannot modify any database tables.
* When called from an UPDATE, or DELETE statement, the function cannot query or modify any
database tables modified by that statement.

When called from a SELECT, | NSERT, UPDATE, or DELETE statement, the function cannot
execute SQL transaction control statements (such as COMM T), session control statements (such
asSET ROLE), or system control statements (such as ALTER SYSTEM). Also, it cannot
execute DDL statements (such as CREATE) because they are followed by an automatic commit.

» Thefunction cannot call another subprogram that breaks one of the above restrictions.

Oracle9i: Program with PL/SQL 10-14

Restrictions on Calling from SQL

CREATE OR REPLACE FUNCTION dm _call _sql (p_sal NUMBER)
RETURN NUMBER | S
BEG N
I NSERT | NTO enpl oyees(enpl oyee_id, |ast_nane, emil,
hire_date, job_id, salary)
VALUES(1, 'enployee 1', 'enpl@onpany.com,
SYSDATE, 'SA MAN , 1000);
RETURN (p_sal + 100);
END;
/

Function created.

UPDATE enpl oyees SET salary = dml _cal |l _sqgl (2000)
WHERE enpl oyee_id = 170;

TTPDATE emplovees SET salary = dml call sql{2000%
E 3

EEROR. at line 1:
CEA-040971: table PLEQL EMPLOYEES 15 mutating, trigeerfinction may not see it
QFA-06512 at "PLIQLDMIL,_CATL SQL" line 4

‘ 10-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Restrictions on Calling Functions from SQL: Example

The code example in the slide shows an example of having a DML statement in a function. The function
DML_CALL_SQ. contains a DML statement that inserts a new record into the EMPLOYEES table. This
functionisinvoked in the UPDATE statement that modifies the salary of employee 170 to the amount
returned from the function. The UPDATE statement returns an error saying that the table is mutating.

Consider the following example where the function QUERY _CALL_SQL queries the SALARY column of

the EMPLOYEE table:
CREATE OR REPLACE FUNCTI ON query_call _sql (a NUVBER)
RETURN NUMBER | S
s NUMBER;
BEG N
SELECT sal ary I NTO s FROM enpl oyees
WHERE enpl oyee _id = 170;
RETURN (s + a);
END;
/

The above function, when invoked from the following UPDATE statement, returns the error message
similar to the error message shown in the dide.
UPDATE enpl oyees SET salary = query_call _sql (100)

WHERE enpl oyee id = 170;

Oracle9i: Program with PL/SQL 10-15

Removing Functions

Drop a stored function.
Syntax:
DROP FUNCTI ON functi on_nane

Example:

DROP FUNCTI ON get _sal ;

Function dropped.

* All the privileges granted on a function are revoked
when the function is dropped.

* The CREATE OR REPLACE syntax is equivalent to
dropping a function and recreating it. Privileges

granted on the function remain the same when this
syntax is used.

‘ 10-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Removing Functions

When a stored function is no longer required, you can use a SQL statement in iSQL*Plusto drop it.
To remove a stored function by using iSQL*Plus, execute the SQL command DROP FUNCTI ON.
CREATE OR REPLACE Versus DROP and CREATE

The REPLACE clauseinthe CREATE OR REPLACE syntax isequivalent to dropping a function
and re-creating it. When you usethe CREATE OR REPLACE syntax, the privileges granted on this
object to other users remain the same. When you DROP afunction and then create it again, all the
privileges granted on this function are automatically revoked.

Oracle9i: Program with PL/SQL 10-16

Procedure or Function?

Procedure Function
Calling [11 Nparameter Calling L] I Nparameter
environment [] OUT parameter N\ environment
<€—> [[_|| NOUT paramete
(DECLARE) (DECLARE)
1
BEGI N BEG N
— —1
EXCEPTI ON EXCEPTI ON
] —]
END; END;
10-17 Copyright © Oracle Corporation, 2001. All rights reserved.

How Procedures and Functions Differ

You create a procedure to store a series of actions for later execution. A procedure can contain zero or
more parameters that can be transferred to and from the calling environment, but a procedure does not
have to return a value.

Y ou create a function when you want to compute a value, which must be returned to the calling
environment. A function can contain zero or more parameters that are transferred from the calling
environment. Functions should return only a single value, and the valueis returned through a RETURN
statement. Functions used in SQL statements cannot have OUT or | N OUT mode parameters.

Oracle9i: Program with PL/SQL 10-17

Comparing Procedures
and Functions

Procedures Functions

Execute as a PL/SQL Invoke as part of an
statement expression

Do not contain RETURN Must contain a RETURN
clausein the header clausein the header

Can return none, one, Must return a single value
or many values

Can contain a RETURN Must contain at least one
statement RETURN statement

‘ 10-18 Copyright © Oracle Corporation, 2001. All rights reserved.

How Procedures and Functions Differ (continued)

A procedure containing one OUT parameter can be rewritten as a function containing a RETURN
statement.

Oracle9i: Program with PL/SQL 10-18

Benefits of Stored
Procedures and Functions

* Improved performance

* Easy maintenance

* Improved data security and integrity
* Improved code clarity

‘ 10-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Benefits

In addition to modularizing application devel opment, stored procedures and functions have the
following benefits:

e Improved performance
— Avoid reparsing for multiple users by exploiting the shared SQL area
— Avoid PL/SQL parsing at run time by parsing at compile time

— Reduce the number of calls to the database and decrease network traffic by bundling
commands

» Easy maintenance
— Modify routines online without interfering with other users
— Modify oneroutine to affect multiple applications
— Modify oneroutineto diminate duplicate testing

e Improved data security and integrity

— Control indirect access to database objects from nonprivileged users with security
privileges

— Ensurethat related actions are performed together, or not at all, by funnding activity for
related tables through a single path

» Improved code clarity: By using appropriate identifier names to describe the actions of the
routine, you reduce the need for comments and enhance clarity.
Oracle9i: Program with PL/SQL 10-19

Summary

In this lesson, you should have learned that:

e A functionis a named PL/SQL block that must
return a value.

e A function is created by using the CREATE
FUNCTI ON syntax.

e A functionis invoked as part of an expression.

* A function stored in the database can be called in
SQL statements.

* A function can be removed from the database by
using the DROP FUNCTI ON syntax.

®* Generally, you use a procedure to perform an
action and a function to compute a value.

‘ 10-20 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

A functionis a named PL/SQL block that must return avalue. Generaly, you create a function to
compute and return avalue, and a procedure to perform an action.

A function can be created or dropped.
A function isinvoked as a part of an expression.

Oracle9i: Program with PL/SQL 10-20

Practice 10 Overview

This practice covers the following topics:

* Creating stored functions

— To query a database table and return specific
values

— To beused in a SQL statement

— To insert a new row, with specified parameter
values, into a database table

— Using default parameter values
* Invoking a stored function from a SQL statement

* Invoking a stored function from a stored
procedure

‘ 10-21 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 10 Overview
If you encounter compilation errors when using i SQL * Plus, use the SHOW ERRORS command.
If you correct any compilation errorsiniSQL*Plus, do so in the original script file, not in the buffer,
and then rerun the new version of thefile This will save a new version of the program unit to the data
dictionary.

Oracle9i: Program with PL/SQL 10-21

Practice 10
1. Createand invokethe Q JOB function to return ajob title.

a. Createafunctioncaled Q JOBtoreturnajob titleto ahost variable.

b. Compilethe code; create a host variable G_TI TLE and invoke the function with job ID

SA REP. Query the host variable to view the result.

| G_TITLE

|Sa|es Fepresentative

2. Create afunction called ANNUAL _COVP to return the annual salary by accepting two

parameters. an employee' s monthly salary and commission. The function should address NUL L

values.

a. Create and invoke the function ANNUAL _COMP, passing in values for monthly salary and

commission. Either or both values passed can be NULL, but the function should still
return an annual salary, which is not NULL. The annual salary is defined by the basic

formula:

(sal ary*12) + (conmmi ssion_pct*sal ary*12)

b. Usethefunctionina SELECT statement against the EMPLOYEES table for department

80.

| EMPLOYEEID | LAST NAME | Annual Compensation

| 145 |Russell | 235200
| 146 |Partners | 210600
| 147 |Errazuriz | 187200
| 148 |Cambrault | 171600
| 10 | [Tlatlaw | 16400
|. " it || 1ayiar | | 23040
| 177 |Livingston | 120960
| 179 |Johnzon | 81840

34 rows selected.

Oracle9i: Program with PL/SQL 10-22

Practice 10 (continued)

3. Create aprocedure, NEW EMP, to insert a new employee into the EMPLOYEES table. The
procedure should contain a call to the VALI D_DEPTI D function to check whether the
department 1D specified for the new employee exists in the DEPARTMVENTS table.

a. Createthefunction VALI D_DEPTI Dto validate a specified department ID. The
function should return a BOOLEAN value.

b. Createthe procedure NEW EMP to add an employee to the EMPLOYEES table. A new
row should be added to the EMPLOYEES table if the function returns TRUE. If the
function returns FAL SE, the procedure should alert the user with an appropriate message.

Define default values for most parameters. The default commission is O, the default salary
is 1000, the default department number is 30, the default job is SA REP, and the default
manager ID is 145. For the employee's ID, use the sequence EMPLOYEES SEQ. Provide
the last name, first name, and e-mail address of the employee.

c. Test your NEW EMP procedure by adding a new employee named Jane Harristo
department 15. Allow all other parametersto default. What was the result?

d. Test your NEW EMP procedure by adding a new employee named Joe Harristo
department 80. Allow all other parametersto default. What was the result?

Oracle9i: Program with PL/SQL 10-23

Oracle9i: Program with PL/SQL 10-24

Managing Subprograms

ORACLE

Copyright © Oracle Corporation, 2001. All rights reserved.

Objectives

After completing this lesson, you should be able to
do the following:

®* Contrast system privileges with object privileges
®* Contrast invokers rights with definers rights

* |dentify views in the data dictionary to manage
stored objects

®* Describe how to debug subprograms by using the
DBMS _OUTPUT package

11-2 Copyright © Oracle Corporation, 2001. All rights reserved.

Lesson Aim

This lesson introduces you to system and object privilege requirements. Y ou learn how to use the
data dictionary to gain information about stored objects. Y ou also learn how to debug
subprograms.

Oracle9i: Program with PL/SQL 11-2

Required Privileges

System privileges

CREATE (ANY) PROCEDURE

DBA grants
ALTER ANY PROCEDURE
DROP ANY PROCEDURE
EXECUTE ANY PROCEDURE
Object privileges
Owner grants (
>L EXECUTE]

To be able to refer and access objects from a different
schema in a subprogram, you must be granted access to
the referred objects explicitly, not through arole.

11-3 Copyright © Oracle Corporation, 2001. All rights reserved.

System and Object Privileges
There are more than 80 system privileges. Privileges that use the word CREATE or ANY are
system privileges; for example, GRANT ALTER ANY TABLE TO gr een; . System privileges
are assigned by user SYSTEMor SYS.
Object privileges arerights assigned to a specific object within a schema and always include the

name of the object. For example, Scott can assign privileges to Green to alter his EMPLOYEES
table as follows:

GRANT ALTER ON enpl oyees TO green;
To create a PL/SQL subprogram, you must have the system privilege CREATE PROCEDURE.

Y ou can alter, drop, or execute PL/SQL subprograms without any further privileges being
required.

If a PL/SQL subprogram refersto any objects that are not in the same schema, you must be
granted access to these explicitly, not through arole.

If the ANY keyword is used, you can create, alter, drop, or execute your own subprograms and
those in another schema. Note that the ANY keyword is optional only for the CREATE
PROCEDURE privilege.

Y ou must have the EXECUTE object privilege to invoke the PL/SQL subprogram if you are not
the owner and do not have the EXECUTE ANY system privilege.

By default the PL/SQL subprogram executes under the security domain of the owner.

Note: The keyword PROCEDURE is used for stored procedures, functions, and packages.
Oracle9i: Program with PL/SQL 11-3

Granting Access to Data

Direct access:

GRANT SELECT Scott EMPLOYEES

ON enpl oyees

TO scott; ﬂ\l“/-’

G ant Succeeded. pR— ey

— SELECT

Indirect access:

GRANT EXECUTE Green

ON query_enp > a SCOTT. QUERY _EMP
TO gr een,; -

G ant Succeeded. LJ_)

The procedure executes with the privileges of the
owner (default).

11-4 Copyright © Oracle Corporation, 2001. All rights reserved.

Providing Indirect Access to Data

Suppose the EMPLOYEES tableis located within the PERSONNEL schema, and thereis a developer
named Scott and an end user named Green. Ensure that Green can access the EMPLOYEES table
only by way of the QUERY_EMP procedure that Scott created, which queries employee records.

Direct Access
» Fromthe PERSONNEL schema, provide object privileges on the EMPLOYEES table to Scott.
e Scott creates the QUERY _EMP procedure that queries the EMPLOYEES table.
Indirect Access
Scott provides the EXECUTE abject privilege to Green on the QUERY _EMP procedure.

By default the PL/SQL subprogram executes under the security domain of the owner. Thisis
referred to as definer's-rights. Because Scott has direct privileges to EMPLOYEES and has created a
procedure called QUERY _EMP, Green can retrieve information from the EMPLOYEES table by
using the QUERY_EMP procedure.

Oracle9i: Program with PL/SQL 11-4

Using Invoker's-Rights

The procedure executes with the privileges of the user.
Scott EMPLOYEES

CREATE PROCEDURE query_enpl oyee 2 a
(p_id I'N enpl oyees. enpl oyee_i d%@YPE, L\\"/

p_nane OUT enpl oyees. | ast _nane% YPE, 4
p_sal ary QUT enpl oyees. sal ar y%d YPE, T
p_comm OUT |
enpl oyees. conm ssi on_pct %dYPE)
AUTH D CURRENT_USER | SCOTT.
S QUERY_EMPLOYEE
BEG N >
SELECT | ast _nane, sal ary,
conmmi ssi on_pct (SR
I NTO p_nane, p_salary, p_conm -
FROM enpl oyees -V
VWHERE enpl oyee_i d=p_i d; Green
/END guery_enpl oyee; EMPLOYEES
11-5 Copyright © Oracle Corporation, 2001. All rights reserved.

Invoker’s-Rights

To ensure that the procedure executes using the security of the executing user, and not the owner,
use AUTHI D CURRENT _USER. This ensures that the procedure executes with the privileges and
schema context of its current user.

Default behavior, as shown on the previous page, is when the procedure executes under the security

domain of the owner; but if you wanted to explicitly state that the procedure should execute using
the owner's privileges, then use AUTHI D DEFI NER.

Oracle9i: Program with PL/SQL 11-5

Managing Stored PL/SQL Objects

Data dictionary

(

information

General
Source code

ﬂ

Editor

N
Parameters |) P-code | —>
\ N \/

N

Compile Debug [DESCRI BE . . .

errors information/

11-6

Copyright © Oracle Corporation, 2001. All rights reserved.

Managing Stored PL/SQL Objects

Stored

Information Description Access M ethod

General Object information The USER_OBJECTS data dictionary view

Source code Text of the procedure The USER_SOURCE data dictionary view

Parameters Mode: | N OUT/ | N OUT, iSQL* Plus: DESCRI BE command
datatype

P-code Compiled object code Not accessible

Compile errors PL/SQL syntax errors The USER_ERRORS data dictionary view

iSQL* Plus: SHOW ERRORS command
Run-time debug User-specified debug The DBMS_OUTPUT Oracle-supplied package
information variables and messages

Oracle9i: Program with PL/SQL 11-6

USER_OBJECTS

Column Column Description

OBJECT _NAME Name of the object

OBJECT_I D Internal identifier for the object

OBJECT_TYPE Type of object, for example, TABLE,
PROCEDURE, FUNCTI ON, PACKAGE, PACKAGE
BODY, TRI GGER

CREATED Date when the object was created

LAST_DDL_TI ME [Date when the object was last modified

TI MESTAMP Date and time when the object was last
recompiled

STATUS VALI Dor | NVALI D

*Abridged column list

11-7 Copyright © Oracle Corporation, 2001. All rights reserved.

Using USER_OBJECTS

To obtain the names of all PL/SQL stored objects within a schema, query the USER_ OBJECTS

data dictionary view.

You can also examinethe ALL_ OBJECTS and DBA OBJECTS views, each of which contains

the additional OANER column, for the owner of the object.

Oracle9i: Program with PL/SQL 11-7

List All Procedures and Functions

SELECT obj ect _nane, object_type

FROM user _objects

WHERE obj ect _type in (' PROCEDURE ,' FUNCTI ON)
CORDER BY obj ect _nane;

| OBJECT_NAME | OBJECT_TYPE
|ADD_DEPT [PROCEDURE
[aDD_JOB [PROCEDURE
[ADD_JOB_HISTORY [PROCEDURE
[AMNUAL_COMP [FuncTION
[DEL_JOB [PROCEDURE
[DML CALL saL [FUNCTION
[T [FUNCTION
[uPD_JOB [PROCEDURE
[vALID_DEFTID [FuncTION
24 rows selected.

11-8 Copyright © Oracle Corporation, 2001. All rights reserved.

Example

The examplein the slide displays the names of all the procedures and functions that you
have created.

Oracle9i: Program with PL/SQL 11-8

USER SOURCE Data Dictionary View

Column Column Description
NAMVE Name of the object
TYPE Type of object, for example, PROCEDURE,
FUNCTI ON, PACKAGE, PACKAGE BODY
LI NE Line number of the source code
TEXT Text of the source code line
11-9 Copyright © Oracle Corporation, 2001. All rights reserved.

Using USER SOURCE

To obtain the text of a stored procedure or function, use the USER _SOURCE data dictionary view.

Also examinethe ALL_ SOURCE and DBA SOURCE views, each of which contains the additional
OWNER column, for the owner of the object.

If the source fileis unavailable, you can use iSQL*Plus to regenerate it from USER SOURCE.

Oracle9i: Program with PL/SQL 11-9

List the Code of Procedures
and Functions

SELECT text

FROM user _source

WHERE nane = ' QUERY_EMPLOYEE
ORDER BY li ne;

[TEXT
|F‘ROCEDURE gquery_employee
|(p_id IM employees.employee_id%TYPE, p_name OUT employees.last_name%TYFE,

|p_salary QUT ermployees. salary%TYPE, p_comm OUT employees. commission_pct%TYPE)
|AUTHID CURRENT_USER

[

[BEGIN

|SELECT last_name, salary, commission_pct

|INTO p_name,p_salary p_comm

|FROM employees
[WHERE emplayes_id=p_id;
|END query_ermployee;

11 rows selected.

‘ 11-10 Copyright © Oracle Corporation, 2001. All rights reserved.

Example

Use the USER SOURCE data dictionary view to display the complete text for the
QUERY_EMPL OYEE procedure.

Oracle9i: Program with PL/SQL 11-10

USER _ERRORS

Column Column Description

NAMVE Name of the object

TYPE Type of object, for example, PROCEDURE,
FUNCTI ON, PACKAGE, PACKAGE BODY, TRI GGER

SEQUENCE Sequence number, for ordering

LI NE Line number of the source code at which the

error occurs

PCSI TI ON Position in the line at which the error occurs

TEXT Text of the error message

‘ 11-11 Copyright © Oracle Corporation, 2001. All rights reserved.

Obtaining Compile Errors

To obtain the text for compile errors, use the USER ERRORS data dictionary view or the SHOWV
ERRORS iSQL*Plus command.

Also examinethe ALL_ ERRORS and DBA ERRORS views, each of which contains the
additional OWNER column, for the owner of the object.

Oracle9i: Program with PL/SQL 11-11

Detecting Compilation Errors: Example

CREATE OR REPLACE PROCEDURE | og_execution

IS

BEG N

I NPUT I NTO | og_table (user_id, |og_date)
-- wong

VALUES (USER, SYSDATE);

END,;

/

“Warning: Procedure created with compdation errors.

‘ 11-12 Copyright © Oracle Corporation, 2001. All rights reserved.

Example
Given the above codefor LOG_EXECUTI ON, there will be a compile error when you run the
script for compilation.

Oracle9i: Program with PL/SQL 11-12

List Compilation Errors by Using
USER ERRORS

SELECT line || "/" || position PCS, text
FROM user _errors
WHERE nane = ' LOG_EXECUTI ON

ORDER BY Ii ne;

[POS | TEXT
|4a’? |F'LS-DD1I33: Encountered the symbol "INTO" when expecting one of the following: == . (& % ;

PLS-00103: Encountered the symbal "wALUES" when expecting one of the following: . (, % ; limit The symbol
"WALUES" was ignored.

|61 |PLS-00103: Encountered the symbol "END”

‘5?1 ‘

‘ 11-13 Copyright © Oracle Corporation, 2001. All rights reserved.

Listing Compilation Errors, Using USER_ERRORS

The SQL statement above is a SELECT statement from the USER _ERRORS data dictionary
view, which you use to see compilation errors.

Oracle9i: Program with PL/SQL 11-13

List Compilation Errors by Using
SHOW ERRORS

SHOW ERRORS PROCEDURE | og_executi on

Errors for PROCEDURE LOG_EXECUTION:

[LINE/COL | ERROR
|4.f? |F'LS—DD1DS: Encountered the symbal "INTO" when expecting one of th e following: == . (@ % ;

PLS-00103; Encountered the symbol "wALUES" when expecting one of the following: . (, % ; limit The
symbol "YALUES" was ignore d.

61 |PLS-00103; Encountered the symbol "END"

‘5.-’1

‘ 11-14 Copyright © Oracle Corporation, 2001. All rights reserved.

SHOWERRORS

Use SHOWERRORS without any arguments at the SQL prompt to obtain compilation errors for
the last object you compiled.

Y ou can also use the command with a specific program unit. The syntax is as follows:

SHOW ERRORS [{ FUNCTI ON| PROCEDURE| PACKAGE| PACKAGE
BODY| TRI GGER| VI EW [schema.] nane]

Using the SHOWERRORS command, you can view only the compilation errors that are generated
by the latest statement that is used to create a subprogram. The USER ERRCRS data dictionary
view stores all the compilation errors generated previously while creating subprograms.

Oracle9i: Program with PL/SQL 11-14

DESCRI BE in iSQL*Plus

DESCRI BE query_enpl oyee
DESCRI BE add_dept

DESCRI BE t ax

PROCEDURE QUERY_EMPLOYEE
| Argument Name | Type | In/Qut | Default?
[P_ID [NUMBER(E) (M |
[P_namE [VARCHARZ(25) [ouT |
[P_sALARY [MUMBER(E 2) [ouT |
[P_comm [MUMBERE 2) [ouT |

PROCEDURE ADD_DEPT
| Argument Name | Type | In/Qut | Default?
[P_mamE [vARCHARZ(30) i [DEFALLT
[P_LoC [MUMBER(4) i [DEFALLT

FUNCTION TAX RETURNS NUMBER

| Argument Name | Type | In/Qut | Default?
|P_wALUE [NUMBER M |

‘ 11-15 Copyright © Oracle Corporation, 2001. All rights reserved.

Describing Procedures and Functions
To display a procedure or function and its parameter list, use the iSQL*Plus DESCRI BE command.

Example
The codein the dide displays the parameter list for the QUERY_EMPLOYEE and ADD_DEPT
procedures and the TAX function.

Consider the displayed parameter list for the ADD_DEPT procedure, which has defaults. The
DEFAULT columnindicates only that thereis a default value; it does not give the actual valueitsdf.

Oracle9i: Program with PL/SQL 11-15

Debugging PL/SQL Program Units

* The DBM5S_OUTPUT package:
— Accumulates information into a buffer
— Allows retrieval of the information from the buffer

®* Autonomous procedure calls (for example, writing
the output to a log table)

* Software that uses DBMS DEBUG

— Procedure Builder
— Third-party debugging software

‘ 11-16 Copyright © Oracle Corporation, 2001. All rights reserved.

Debugging PL/SQL Program Units
Different packages that can be used for debugging PL/SQL program units are shown in the slide.
Y ou can use DBV5 _QUTPUT packaged procedures to output values and messages from a PL/SQL
block. This is done by accumulating information into a buffer and then allowing the retrieval of the
information from the buffer. DBMS_QOUTPUT is an Oracle-supplied package. You qualify every
reference to these procedures with the DBMS_OUTPUT prefix.
Benefits of Using DBMS_OUTPUT Package

This package enables developers to follow closely the execution of a function or procedure by
sending messages and values to the output buffer. Within iSQL*Plus use SET SERVEROUTPUT ON
or OFF instead of using the ENABLE or DI SABLE procedure.
Suggested Diagnostic I nfor mation

» Message upon entering, leaving a procedure, or indicating that an operation has occurred

e Counter for aloop

» Valuefor avariable before and after an assignment
Note: The buffer is not emptied until the block terminates.
Y ou can debug subprograms by specifying autonomous procedure calls and store the output as
values of columnsinto alog table.

Debugging using Oracle Procedure Builder is discussed in Appendix C. Procedure Builder usesa
Oracle-specified debugging package called DBMS DEBUG.

Oracle9i: Program with PL/SQL 11-16

Summary

//V\Scou

il
Z

)
K A

\ USER_SOURCE
Source \
>
code | ,r-f-’f)
Compile

P-code

Compile

USER_ERRORS

errors

eges

Green

-

‘ 11-17 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary

A user must be granted the necessary privileges to access database objects through a subprogram.

Take advantage of various data dictionary views, SQL commands, i SQL*Plus commands, and
Oracle-supplied procedures to manage a stored procedure or function during its devel opment

cycle.
Data Dictionary View

Name or Command Description

USER_OBJECTS |Datadictionary view Provides general information about the object

USER_SOURCE Data dictionary view Provides the text of the object, (that is, the PL/SQL
bl ock)

DESCRI BE iSQL* Plus command Provides the declaration of the object

USER_ERRORS Data dictionary view Shows compilation errors

SHOW ERRCORS iSQL* Plus command Shows compilation errors, per procedure or function

DBV QUTPUT Oracle-supplied package | Provides user-specified debugging, giving variable
values and messages

GRANT iSQL command Provides the security privileges for the owner who
creates the procedure and the user who runsiit,
enabling them to perform their respective operations

Oracle9i: Program with PL/SQL 11-17

Summary

Execute
- R
O
=l
MQJ Debug \
information
-/ | \J—=N

- /

‘ 11-18 Copyright © Oracle Corporation, 2001. All rights reserved.

Summary (continued)
* Query the data dictionary.
— List all your procedures and functions, using the USER_OBJECTS view.
— List thetext of certain procedures or functions, using the USER_SOURCE view.

» Prepare aprocedure: Recreate a procedure and display any compile errors automatically.

e Test aprocedure Test aprocedure by supplying input values; test a procedure or function
by displaying output or return values.

Oracle9i: Program with PL/SQL 11-18

Practice 11 Overview

This practice covers the following topics:
®* Re-creating the source file for a procedure
®* Re-creating the source file for a function

‘ 11-19 Copyright © Oracle Corporation, 2001. All rights reserved.

Practice 11 Overview

In this practice you will re-create the source code for a procedure and a function.

Oracle9i: Program with PL/SQL 11-19

Practice 11

Suppose you have lost the code for the NEW EMP procedure and the VALI D_DEPTI D function
that you created in lesson 10. (If you did not complete the practices in lesson 10, you can run the
solution scripts to create the procedure and function.)

Create an iSQL*Plus spool fileto query the appropriate data dictionary view to regenerate the

code.

Hint:
SET -- options ON| OFF
SELECT -- statenment(s) to extract the code
SET -- reset options O\ OFF

To spool the output of thefiletoa. sql filefromiSQL*Plus, sdect the Save option for the
CQut put and execute the code.

SET ECHO OFF HEADIMG OFF FEEDBACK, OFF YERIFY OFF
COLURM LINE MOPRIMT Unknown File Type
SET PAGESIZE D

¢ Tou have started to download a file of type
applcationvwnd. oracle-izglpluz. output

SELECT 'CHEEATE OR REFLACE ' O line

FROM DUAL s Click "Mare Infa'" ta learm kow to extend Mavigator's
LIMICIR capabilities.
SELECT text, line
FROM USER_SOURCE More Info | Pick &pp... | Save File... Cancel |
WHERE name IN [MEW EMP' ALID C
R

@Execute |Dutputji|:i|e 'I((:) Clear Screen | Save Script |

Save Az EdEA

Save jn: |E Solutions = ﬁl

File name: IHecreate.sqI é@b Save |
Save as ype: If-xll Files [+.7] j Cancel |

Oracle9i: Program with PL/SQL 11-20

